Câu hỏi:

31/05/2025 41

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với đáy và SA = a. Gọi E, F lần lượt là hình chiếu của A lên SB, SD. Khi đó:

a) Góc giữa đường thẳng AE và mặt phẳng (SBC) bằng 90°.

b) Góc giữa đường thẳng AF và mặt phẳng (SCD) bằng 60°.

c) Góc giữa đường thẳng SA và mặt phẳng (SBC) bằng 45°.

d) Góc giữa đường thẳng SC và mặt phẳng (AEF) bằng 30°.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Góc giữa đường thẳng AE và mặt phẳng (SBC) bằng 90°. (ảnh 1)

a) Ta có BC ^ AB và BC ^ SA Þ BC ^ (SAB) Þ BC ^ AE.

Lại có AE ^ SB. Do đó AE ^ (SBC). Suy ra (AE, (SBC)) = 90°.

b) Tương tự câu a, (AF, (SCD)) = 90°.

c) Ta có AE ^ (SBC) tại E nên (SA, (SBC)) = (SA, SE).

DASE vuông tại E nên (SA, (SBC)) = (SA, SE) = \(\widehat {ASE}\).

Xét DSAB vuông tại A mà SA = SB = a nên DSAB vuông cân Þ \(\widehat {ASB} = 45^\circ \) hay \(\widehat {ASE} = 45^\circ \).

d) Theo câu a, AE ^ (SBC) Þ AE ^ SC.

Tương tự ta có SC ^ AF nên SC ^ (AEF) Þ (SC, (AEF)) = 90°.

Đáp án: a) Đúng;   b) Sai;    c) Đúng;   d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) cạnh \(a\), SA vuông góc với đáy và \(SA = a\sqrt 3 \). Góc giữa đường thẳng \(SD\) và mặt phẳng \((ABCD)\)bằng:    

Lời giải

C

V (ảnh 1)

\(SA \bot ABCD\)nên góc giữa đường thẳng \(SD\) và mặt phẳng \((ABCD)\)là góc \(\widehat {SDA}\).

Trong tam giác vuông \(SDA\) ta có: \(\tan \widehat {SDA} = \frac{{SA}}{{AD}} = \sqrt 3 \Rightarrow \widehat {SDA} = 60^\circ \).

Lời giải

B

Góc giữa đường thẳng \(SC\)và mặt phẳng \[\left( {ABC} \right)\] là góc \(\widehat {SCA}\).

Tam giác \(SAC\) vuông cân tại \(A\) nên góc \(\widehat {SCA} = 45^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Cho hình chóp \(S.ABC\) có cạnh \(SA\) vuông góc với đáy. Góc giữa đường thẳng \(SB\) và mặt phẳng đáy là góc giữa hai đường thẳng nào dưới đây?     

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay