Câu hỏi:

31/05/2025 52

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với đáy và SA = a. Gọi E, F lần lượt là hình chiếu của A lên SB, SD. Khi đó:

a) Góc giữa đường thẳng AE và mặt phẳng (SBC) bằng 90°.

b) Góc giữa đường thẳng AF và mặt phẳng (SCD) bằng 60°.

c) Góc giữa đường thẳng SA và mặt phẳng (SBC) bằng 45°.

d) Góc giữa đường thẳng SC và mặt phẳng (AEF) bằng 30°.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Góc giữa đường thẳng AE và mặt phẳng (SBC) bằng 90°. (ảnh 1)

a) Ta có BC ^ AB và BC ^ SA Þ BC ^ (SAB) Þ BC ^ AE.

Lại có AE ^ SB. Do đó AE ^ (SBC). Suy ra (AE, (SBC)) = 90°.

b) Tương tự câu a, (AF, (SCD)) = 90°.

c) Ta có AE ^ (SBC) tại E nên (SA, (SBC)) = (SA, SE).

DASE vuông tại E nên (SA, (SBC)) = (SA, SE) = \(\widehat {ASE}\).

Xét DSAB vuông tại A mà SA = SB = a nên DSAB vuông cân Þ \(\widehat {ASB} = 45^\circ \) hay \(\widehat {ASE} = 45^\circ \).

d) Theo câu a, AE ^ (SBC) Þ AE ^ SC.

Tương tự ta có SC ^ AF nên SC ^ (AEF) Þ (SC, (AEF)) = 90°.

Đáp án: a) Đúng;   b) Sai;    c) Đúng;   d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

C

V (ảnh 1)

\(SA \bot ABCD\)nên góc giữa đường thẳng \(SD\) và mặt phẳng \((ABCD)\)là góc \(\widehat {SDA}\).

Trong tam giác vuông \(SDA\) ta có: \(\tan \widehat {SDA} = \frac{{SA}}{{AD}} = \sqrt 3 \Rightarrow \widehat {SDA} = 60^\circ \).

Lời giải

A

V (ảnh 1)

Do \(SA \bot \left( {ABCD} \right)\) nên góc giữa đường thẳng \(SB\) và mặt phẳng đáy bằng góc \(\widehat {SBA}\).

Ta có \(\cos \widehat {SBA} = \frac{{AB}}{{SB}}\)\( = \frac{1}{2}\)\( \Rightarrow \widehat {SBA} = 60^\circ \).

Vậy góc giữa đường thẳng \(SB\) và và mặt phẳng đáy bằng bằng \(60^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP