Câu hỏi:

31/05/2025 381 Lưu

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Khoảng cách giữa hai đường thẳng SA và BC bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

C

Khoảng cách giữa hai đường thẳng SA và BC bằng  	 (ảnh 1)

Gọi H là trung điểm của AB.

DSAB đều và (SAB) ^ (ABCD) nên SH ^ (ABCD).

Vì BC // AD nên BC // (SAD). Do đó d(BC, SA) = d(BC, (SAD)) = d(B, (SAD)) = 2d(H, (SAD)).

Hạ HK ^ SA.

Vì AD ^ AB và AD ^ SH (SH ^ (ABCD)) nên AD ^ (SAB) Þ AD ^ HK.

Do đó HK ^ (SAD). Do đó d(H, (SAD)) = HK.

Ta có \(SH = \frac{{a\sqrt 3 }}{2};AH = \frac{a}{2}\).

Xét DSHA vuông tại H, có \(\frac{1}{{H{K^2}}} = \frac{1}{{S{H^2}}} + \frac{1}{{A{H^2}}} = \frac{4}{{3{a^2}}} + \frac{4}{{{a^2}}} = \frac{{16}}{{3{a^2}}}\) \( \Rightarrow HK = \frac{{a\sqrt 3 }}{4}\).

Suy ra d(SA, BC) \( = 2.\frac{{a\sqrt 3 }}{4} = \frac{{a\sqrt 3 }}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

b (ảnh 1)

a) Kẻ \(AH \bot SB\) tại \(H\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BC \bot SA}\\{BC \bot AB}\end{array} \Rightarrow BC \bot (SAB) \Rightarrow BC \bot AH} \right.\).

Ta lại có: \(AH \bot SB \Rightarrow AH \bot (SBC) \Rightarrow d(A,(SBC)) = AH\).

Ta có: \(AH = \frac{1}{{\sqrt {\frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}}} }} = \frac{1}{{\sqrt {\frac{1}{{{{\left( {\sqrt 3 a} \right)}^2}}} + \frac{1}{{{a^2}}}} }} = \frac{{\sqrt 3 }}{2}a\).

Vậy \(d(A,(SBC)) = \frac{{\sqrt 3 }}{2}a\).

b) Vì AD // BC nên AD // (SBC).

c) Ta có: \(AD//(SBC) \Rightarrow d(D,(SBC)) = \frac{{\sqrt 3 }}{2}a\).

d) Ta có: \(MA\) cắt \((SBC)\) tại \(S\)

\( \Rightarrow \frac{{d(M,(SBC))}}{{d(A,(SBC))}} = \frac{{MS}}{{AS}} = \frac{1}{2} \Rightarrow d(M,(SBC)) = \frac{1}{2}d(A,(SBC)) = \frac{1}{2} \cdot \frac{{\sqrt 3 }}{2}a = \frac{{\sqrt 3 }}{4}a{\rm{. }}\)

Đáp án: a) Sai;   b) Đúng;   c) Đúng;   d) Đúng.

Lời giải

c (ảnh 1)

a) Có SA ^ (ABCD) Þ SA ^ BC mà BC ^ AB Þ BC ^ (SAB) Þ BC ^ SB.

\(\left\{ \begin{array}{l}\left( {SBC} \right) \cap \left( {ABCD} \right) = BC\\AB \bot BC\\SB \bot BC\end{array} \right.\) Þ ((SBC), (ABCD)) = \(\widehat {SBA}\).

b) Có SA ^ (ABCD) Þ SA ^ DO mà DO ^ AC Þ DO ^ (SAC) Þ d(D, (SAC)) = DO.

c) Có SA ^ CD (do SA ^ (ABCD)) mà CD ^ AD Þ CD ^ (SAD).

Do đó SD là hình chiếu vuông góc của SC trên (SAD).

Suy ra (SC, (SAD)) = (SC, SD) = \(\widehat {DSC}\).

d) Có CD ^ BC mà BC ^ SB Þ d(CD, SB) = BC.

Đáp án: a) Đúng;   b) Đúng;   c) Đúng;   d) Sai.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP