Câu hỏi:

31/05/2025 190

Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng a, SA ^ (ABCD). Biết góc phẳng nhị diện [S, BC, A] = 60°.

a) BD ^ SC.

b) [S, BC, A] = \(\widehat {SBA}\).

c) d(S, (ABCD)) = \(a\sqrt 2 \).

d) \(d\left( {C,(SBD)} \right) = \frac{{a\sqrt 2 }}{2}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) BD ^ SC. (ảnh 1)

a) Ta có BD ^ AC và BD ^ SA nên BD ^ (SAC) Þ BD ^ SC.

b) Ta có BC ^ AB và BC ^ SA nên BC ^ (SAB) Þ BC ^ SB.

Suy ra [S, BC, A] = \(\widehat {SBA} = 60^\circ \).

c) Xét DSAB vuông tại A ta có \(\tan \widehat {SBA} = \frac{{SA}}{{AB}}\)Þ \(SA = a\sqrt 3 \).

Vì SA ^ (ABCD) nên d(S, (ABCD)) = \(SA = a\sqrt 3 \).

d) Hạ AH ^ SO, H Î SO.

Ta có AH ^ SO và AH ^ BD (BD ^ (SAC)) Þ AH ^ (SBD) Þ d(A, (SBD)) = AH.

Xét DSAO vuông tại A, có \(\frac{1}{{A{H^2}}} = \frac{1}{{A{S^2}}} + \frac{1}{{A{O^2}}} = \frac{1}{{{{\left( {a\sqrt 3 } \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2}}} = \frac{7}{{3{a^2}}}\) \( \Rightarrow AH = \frac{{a\sqrt {21} }}{7}\).

Do \(\frac{{CO}}{{AO}} = \frac{{d\left( {C,\left( {SBD} \right)} \right)}}{{d\left( {A,\left( {SBD} \right)} \right)}} = 1\) Û d(C, (SBD)) = d(A, (SBD)) = \(\frac{{a\sqrt {21} }}{7}\).

Đáp án: a) Đúng;   b) Đúng;   c) Sai;   d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

b (ảnh 1)

a) Kẻ \(AH \bot SB\) tại \(H\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BC \bot SA}\\{BC \bot AB}\end{array} \Rightarrow BC \bot (SAB) \Rightarrow BC \bot AH} \right.\).

Ta lại có: \(AH \bot SB \Rightarrow AH \bot (SBC) \Rightarrow d(A,(SBC)) = AH\).

Ta có: \(AH = \frac{1}{{\sqrt {\frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}}} }} = \frac{1}{{\sqrt {\frac{1}{{{{\left( {\sqrt 3 a} \right)}^2}}} + \frac{1}{{{a^2}}}} }} = \frac{{\sqrt 3 }}{2}a\).

Vậy \(d(A,(SBC)) = \frac{{\sqrt 3 }}{2}a\).

b) Vì AD // BC nên AD // (SBC).

c) Ta có: \(AD//(SBC) \Rightarrow d(D,(SBC)) = \frac{{\sqrt 3 }}{2}a\).

d) Ta có: \(MA\) cắt \((SBC)\) tại \(S\)

\( \Rightarrow \frac{{d(M,(SBC))}}{{d(A,(SBC))}} = \frac{{MS}}{{AS}} = \frac{1}{2} \Rightarrow d(M,(SBC)) = \frac{1}{2}d(A,(SBC)) = \frac{1}{2} \cdot \frac{{\sqrt 3 }}{2}a = \frac{{\sqrt 3 }}{4}a{\rm{. }}\)

Đáp án: a) Sai;   b) Đúng;   c) Đúng;   d) Đúng.

Câu 2

Lời giải

C

Khoảng cách giữa hai đường thẳng SA và BC bằng  	 (ảnh 1)

Gọi H là trung điểm của AB.

DSAB đều và (SAB) ^ (ABCD) nên SH ^ (ABCD).

Vì BC // AD nên BC // (SAD). Do đó d(BC, SA) = d(BC, (SAD)) = d(B, (SAD)) = 2d(H, (SAD)).

Hạ HK ^ SA.

Vì AD ^ AB và AD ^ SH (SH ^ (ABCD)) nên AD ^ (SAB) Þ AD ^ HK.

Do đó HK ^ (SAD). Do đó d(H, (SAD)) = HK.

Ta có \(SH = \frac{{a\sqrt 3 }}{2};AH = \frac{a}{2}\).

Xét DSHA vuông tại H, có \(\frac{1}{{H{K^2}}} = \frac{1}{{S{H^2}}} + \frac{1}{{A{H^2}}} = \frac{4}{{3{a^2}}} + \frac{4}{{{a^2}}} = \frac{{16}}{{3{a^2}}}\) \( \Rightarrow HK = \frac{{a\sqrt 3 }}{4}\).

Suy ra d(SA, BC) \( = 2.\frac{{a\sqrt 3 }}{4} = \frac{{a\sqrt 3 }}{2}\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP