Câu hỏi:
31/05/2025 190
Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng a, SA ^ (ABCD). Biết góc phẳng nhị diện [S, BC, A] = 60°.
a) BD ^ SC.
b) [S, BC, A] = \(\widehat {SBA}\).
c) d(S, (ABCD)) = \(a\sqrt 2 \).
d) \(d\left( {C,(SBD)} \right) = \frac{{a\sqrt 2 }}{2}\).
Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng a, SA ^ (ABCD). Biết góc phẳng nhị diện [S, BC, A] = 60°.
a) BD ^ SC.
b) [S, BC, A] = \(\widehat {SBA}\).
c) d(S, (ABCD)) = \(a\sqrt 2 \).
d) \(d\left( {C,(SBD)} \right) = \frac{{a\sqrt 2 }}{2}\).
Quảng cáo
Trả lời:
a) Ta có BD ^ AC và BD ^ SA nên BD ^ (SAC) Þ BD ^ SC.
b) Ta có BC ^ AB và BC ^ SA nên BC ^ (SAB) Þ BC ^ SB.
Suy ra [S, BC, A] = \(\widehat {SBA} = 60^\circ \).
c) Xét DSAB vuông tại A ta có \(\tan \widehat {SBA} = \frac{{SA}}{{AB}}\)Þ \(SA = a\sqrt 3 \).
Vì SA ^ (ABCD) nên d(S, (ABCD)) = \(SA = a\sqrt 3 \).
d) Hạ AH ^ SO, H Î SO.
Ta có AH ^ SO và AH ^ BD (BD ^ (SAC)) Þ AH ^ (SBD) Þ d(A, (SBD)) = AH.
Xét DSAO vuông tại A, có \(\frac{1}{{A{H^2}}} = \frac{1}{{A{S^2}}} + \frac{1}{{A{O^2}}} = \frac{1}{{{{\left( {a\sqrt 3 } \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2}}} = \frac{7}{{3{a^2}}}\) \( \Rightarrow AH = \frac{{a\sqrt {21} }}{7}\).
Do \(\frac{{CO}}{{AO}} = \frac{{d\left( {C,\left( {SBD} \right)} \right)}}{{d\left( {A,\left( {SBD} \right)} \right)}} = 1\) Û d(C, (SBD)) = d(A, (SBD)) = \(\frac{{a\sqrt {21} }}{7}\).
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Sai.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Kẻ \(AH \bot SB\) tại \(H\).
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BC \bot SA}\\{BC \bot AB}\end{array} \Rightarrow BC \bot (SAB) \Rightarrow BC \bot AH} \right.\).
Ta lại có: \(AH \bot SB \Rightarrow AH \bot (SBC) \Rightarrow d(A,(SBC)) = AH\).
Ta có: \(AH = \frac{1}{{\sqrt {\frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}}} }} = \frac{1}{{\sqrt {\frac{1}{{{{\left( {\sqrt 3 a} \right)}^2}}} + \frac{1}{{{a^2}}}} }} = \frac{{\sqrt 3 }}{2}a\).
Vậy \(d(A,(SBC)) = \frac{{\sqrt 3 }}{2}a\).
b) Vì AD // BC nên AD // (SBC).
c) Ta có: \(AD//(SBC) \Rightarrow d(D,(SBC)) = \frac{{\sqrt 3 }}{2}a\).
d) Ta có: \(MA\) cắt \((SBC)\) tại \(S\)
\( \Rightarrow \frac{{d(M,(SBC))}}{{d(A,(SBC))}} = \frac{{MS}}{{AS}} = \frac{1}{2} \Rightarrow d(M,(SBC)) = \frac{1}{2}d(A,(SBC)) = \frac{1}{2} \cdot \frac{{\sqrt 3 }}{2}a = \frac{{\sqrt 3 }}{4}a{\rm{. }}\)
Đáp án: a) Sai; b) Đúng; c) Đúng; d) Đúng.
Lời giải
C
Gọi H là trung điểm của AB.
Vì DSAB đều và (SAB) ^ (ABCD) nên SH ^ (ABCD).
Vì BC // AD nên BC // (SAD). Do đó d(BC, SA) = d(BC, (SAD)) = d(B, (SAD)) = 2d(H, (SAD)).
Hạ HK ^ SA.
Vì AD ^ AB và AD ^ SH (SH ^ (ABCD)) nên AD ^ (SAB) Þ AD ^ HK.
Do đó HK ^ (SAD). Do đó d(H, (SAD)) = HK.
Ta có \(SH = \frac{{a\sqrt 3 }}{2};AH = \frac{a}{2}\).
Xét DSHA vuông tại H, có \(\frac{1}{{H{K^2}}} = \frac{1}{{S{H^2}}} + \frac{1}{{A{H^2}}} = \frac{4}{{3{a^2}}} + \frac{4}{{{a^2}}} = \frac{{16}}{{3{a^2}}}\) \( \Rightarrow HK = \frac{{a\sqrt 3 }}{4}\).
Suy ra d(SA, BC) \( = 2.\frac{{a\sqrt 3 }}{4} = \frac{{a\sqrt 3 }}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.