Câu hỏi:

31/05/2025 20

Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tam giác ABC vuông tại A có BC = 2, \(AB = \sqrt 3 \). Tính khoảng cách từ AA' đến mặt phẳng (BCC'B') (kết quả làm tròn đến hàng phần trăm).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tính khoảng cách từ AA' đến mặt phẳng (BCC'B') (kết quả làm tròn đến hàng phần trăm). (ảnh 1)

Ta có AA' // (BCC'B') nên d(AA', (BCC'B')) = d(A, (BCC'B')).

Hạ AH ^ BC Þ AH ^ (BCC'B') Þ d(A, (BCC'B')) = AH.

Ta có \(\frac{1}{{A{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{1}{3} + \frac{1}{{B{C^2} - A{B^2}}} = \frac{1}{3} + 1 = \frac{4}{3}\) Þ \(AH = \frac{{\sqrt 3 }}{2} \approx 0,87\).

Trả lời: 0,87.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

b (ảnh 1)

a) Kẻ \(AH \bot SB\) tại \(H\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BC \bot SA}\\{BC \bot AB}\end{array} \Rightarrow BC \bot (SAB) \Rightarrow BC \bot AH} \right.\).

Ta lại có: \(AH \bot SB \Rightarrow AH \bot (SBC) \Rightarrow d(A,(SBC)) = AH\).

Ta có: \(AH = \frac{1}{{\sqrt {\frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}}} }} = \frac{1}{{\sqrt {\frac{1}{{{{\left( {\sqrt 3 a} \right)}^2}}} + \frac{1}{{{a^2}}}} }} = \frac{{\sqrt 3 }}{2}a\).

Vậy \(d(A,(SBC)) = \frac{{\sqrt 3 }}{2}a\).

b) Vì AD // BC nên AD // (SBC).

c) Ta có: \(AD//(SBC) \Rightarrow d(D,(SBC)) = \frac{{\sqrt 3 }}{2}a\).

d) Ta có: \(MA\) cắt \((SBC)\) tại \(S\)

\( \Rightarrow \frac{{d(M,(SBC))}}{{d(A,(SBC))}} = \frac{{MS}}{{AS}} = \frac{1}{2} \Rightarrow d(M,(SBC)) = \frac{1}{2}d(A,(SBC)) = \frac{1}{2} \cdot \frac{{\sqrt 3 }}{2}a = \frac{{\sqrt 3 }}{4}a{\rm{. }}\)

Đáp án: a) Sai;   b) Đúng;   c) Đúng;   d) Đúng.

Câu 2

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Khoảng cách giữa hai đường thẳng SA và BC bằng

Lời giải

C

Khoảng cách giữa hai đường thẳng SA và BC bằng  	 (ảnh 1)

Gọi H là trung điểm của AB.

DSAB đều và (SAB) ^ (ABCD) nên SH ^ (ABCD).

Vì BC // AD nên BC // (SAD). Do đó d(BC, SA) = d(BC, (SAD)) = d(B, (SAD)) = 2d(H, (SAD)).

Hạ HK ^ SA.

Vì AD ^ AB và AD ^ SH (SH ^ (ABCD)) nên AD ^ (SAB) Þ AD ^ HK.

Do đó HK ^ (SAD). Do đó d(H, (SAD)) = HK.

Ta có \(SH = \frac{{a\sqrt 3 }}{2};AH = \frac{a}{2}\).

Xét DSHA vuông tại H, có \(\frac{1}{{H{K^2}}} = \frac{1}{{S{H^2}}} + \frac{1}{{A{H^2}}} = \frac{4}{{3{a^2}}} + \frac{4}{{{a^2}}} = \frac{{16}}{{3{a^2}}}\) \( \Rightarrow HK = \frac{{a\sqrt 3 }}{4}\).

Suy ra d(SA, BC) \( = 2.\frac{{a\sqrt 3 }}{4} = \frac{{a\sqrt 3 }}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA ^ (ABCD). Gọi I là trung điểm của SC. Khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng nào? 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay