Câu hỏi:

31/05/2025 52

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với \(AB = a\sqrt 2 \), \(AC = a\sqrt 3 \). Cạnh bên \(SA = 2a\) và vuông góc với mặt đáy \((ABCD)\). Khi đó:

a) \(AD//(SBC)\).

b) Khoảng cách từ \(D\) đến mặt phẳng \((SBC)\) bằng: \(\frac{{a\sqrt 3 }}{3}\).

c) Khoảng cách giữa hai đường thẳng \(SD,AB\) bằng: \(\frac{{2a\sqrt 5 }}{5}\).

d) Thể tích khối chóp \(S.ABCD\) bằng: \(\frac{{\sqrt 2 {a^3}}}{3}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

V (ảnh 1)

a) b)  Ta có: \(AD//BC \Rightarrow AD//(SBC) \Rightarrow d(D,(SBC)) = d(A,(SBC))\).

Trong mặt phẳng \((SAB)\), kẻ \(AH \bot SB\) tại \(H\). (1)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BC \bot AB}\\{BC \bot SA}\end{array} \Rightarrow BC \bot (SAB) \Rightarrow AH \bot BC} \right.\). (2)

Từ (1) và (2) suy ra \(AH \bot (SBC)\) hay \(d(A,(SBC)) = AH\).

Tam giác \(SAB\) vuông tại \(A\) có đường cao \(AH\) nên:

\(\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}} \Rightarrow AH = \frac{{SA \cdot AB}}{{\sqrt {S{A^2} + A{B^2}} }} = \frac{{2a \cdot a\sqrt 2 }}{{\sqrt {4{a^2} + 2{a^2}} }} = \frac{{2a\sqrt 3 }}{3}{\rm{. }}\)

Vậy \(d(D,(SBC)) = d(A,(SBC)) = AH = \frac{{2a\sqrt 3 }}{3}\).

c) Trong mặt phẳng \((SAD)\), kẻ \(AK \bot SD\) tại \(K\). (3)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{AB \bot SA}\\{AB \bot AD}\end{array} \Rightarrow AB \bot (SAD) \Rightarrow AB \bot AK} \right.\).(4)

Từ (3) và (4) suy ra \(AK\) là đường vuông góc chung của hai đường thẳng chéo nhau \(AB,SD\).

Tam giác \(ACD\) vuông tại \(D\) nên \(AD = \sqrt {A{C^2} - C{D^2}} = \sqrt {3{a^2} - 2{a^2}} = a\).

Tam giác \(SAD\) vuông tại \(A\) có đường cao \(AK\) nên

\(\frac{1}{{A{K^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{D^2}}} \Rightarrow AK = \frac{{SA \cdot AD}}{{\sqrt {S{A^2} + A{D^2}} }} = \frac{{2a \cdot a}}{{\sqrt {4{a^2} + {a^2}} }} = \frac{{2a\sqrt 5 }}{5}{\rm{. }}\)

Vậy \(d(AB,SD) = AK = \frac{{2a\sqrt 5 }}{5}\).

c) Diện tích đáy hình chóp là: \({S_{ABCD}} = a \cdot a\sqrt 2 = {a^2}\sqrt 2 \).

Thể tích khối chóp cần tìm là:

\({V_{S.ABCD}} = \frac{1}{3}SA \cdot {S_{ABCD}} = \frac{1}{3} \cdot 2a \cdot {a^2}\sqrt 2 = \frac{{2\sqrt 2 {a^3}}}{3}{\rm{ }}\)(đơn vị thể tích).

Đáp án: a) Đúng; b) Sai;   c) Đúng;   d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

V (ảnh 1)

Đặt \(AB = x,\left( {x > 0} \right)\), gọi \(M\) là trung điểm \(BC\).

DABC đều Þ AM ^ BC và AA' ^ BC Þ BC ^ (AA'M) Þ BC ^ A'M.

Ta có \[\left\{ \begin{array}{l}\left( {A'BC} \right) \cap \left( {ABC} \right) = BC\\AM \bot BC\\A'M \bot BC\end{array} \right. \Rightarrow \left( {\left( {A'BC} \right),\left( {ABC} \right)} \right) = \widehat {A'MA} = 30^\circ \].

Xét \(\Delta A'AM\), có \[A'M = \frac{{AM}}{{cos30^\circ }} = \frac{{x\sqrt 3 }}{2}.\frac{2}{{\sqrt 3 }} = x\].

\({S_{A'BC}} = 8 \Leftrightarrow \frac{1}{2}A'M.BC = 8 \Leftrightarrow {x^2} = 16 \Rightarrow x = 4\)

Suy ra \(A'A = AM.\tan 30^\circ = \frac{{4.\sqrt 3 }}{2}.\frac{1}{{\sqrt 3 }} = 2\); \({S_{ABC}} = \frac{{16.\sqrt 3 }}{4} = 4\sqrt 3 \).

Vậy \({V_{ABC.A'B'C'}} = A'A.{S_{ABC}} = 2.4\sqrt 3 = 8\sqrt 3 \approx 13,9\).

Trả lời: 13,9.

Lời giải

a) Mặt phẳng (SAB) vuông góc với mặt phẳng (ABC). (ảnh 1)

a) Theo giả thiết, DSAB vuông tại A có \(SB = a\sqrt 3 ;\widehat {ASB} = 30^\circ \).

Khi đó \(SA = SB.\cos 30^\circ = \frac{{3a}}{2}\)\(AB = SB.\sin 30^\circ = \frac{{a\sqrt 3 }}{2}\).

Do SA ^ (ABC) nên (SAB) ^ (ABC).

b) Vì (SAB) ^ (ABC) và (SAB) ^ (SBC) nên (SBC) ^ (ABC) .

Suy ra BC ^ (SAB) Þ (SC, (SAB)) = (SC, SB) = \(\widehat {CSB} = 45^\circ \).

Suy ra DSBC vuông cân tại B Þ BC = SB = \(a\sqrt 3 \).

c) BC ^ (SAB) Þ CB ^ AB Þ DABC vuông tại B.

d) Có \({S_{\Delta ABC}} = \frac{1}{2}AB.BC = \frac{{3{a^2}}}{4}\)\(V = \frac{1}{3}SA.{S_{\Delta ABC}} = \frac{{3{a^3}}}{8}\).

Vậy tỉ số \(\frac{{{a^3}}}{V} = \frac{8}{3}\).

Đáp án: a) Đúng; b) Sai;   c) Đúng;   d) Sai.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP