Câu hỏi:

31/05/2025 21

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với \(AB = a\sqrt 2 \), \(AC = a\sqrt 3 \). Cạnh bên \(SA = 2a\) và vuông góc với mặt đáy \((ABCD)\). Khi đó:

a) \(AD//(SBC)\).

b) Khoảng cách từ \(D\) đến mặt phẳng \((SBC)\) bằng: \(\frac{{a\sqrt 3 }}{3}\).

c) Khoảng cách giữa hai đường thẳng \(SD,AB\) bằng: \(\frac{{2a\sqrt 5 }}{5}\).

d) Thể tích khối chóp \(S.ABCD\) bằng: \(\frac{{\sqrt 2 {a^3}}}{3}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

V (ảnh 1)

a) b)  Ta có: \(AD//BC \Rightarrow AD//(SBC) \Rightarrow d(D,(SBC)) = d(A,(SBC))\).

Trong mặt phẳng \((SAB)\), kẻ \(AH \bot SB\) tại \(H\). (1)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BC \bot AB}\\{BC \bot SA}\end{array} \Rightarrow BC \bot (SAB) \Rightarrow AH \bot BC} \right.\). (2)

Từ (1) và (2) suy ra \(AH \bot (SBC)\) hay \(d(A,(SBC)) = AH\).

Tam giác \(SAB\) vuông tại \(A\) có đường cao \(AH\) nên:

\(\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}} \Rightarrow AH = \frac{{SA \cdot AB}}{{\sqrt {S{A^2} + A{B^2}} }} = \frac{{2a \cdot a\sqrt 2 }}{{\sqrt {4{a^2} + 2{a^2}} }} = \frac{{2a\sqrt 3 }}{3}{\rm{. }}\)

Vậy \(d(D,(SBC)) = d(A,(SBC)) = AH = \frac{{2a\sqrt 3 }}{3}\).

c) Trong mặt phẳng \((SAD)\), kẻ \(AK \bot SD\) tại \(K\). (3)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{AB \bot SA}\\{AB \bot AD}\end{array} \Rightarrow AB \bot (SAD) \Rightarrow AB \bot AK} \right.\).(4)

Từ (3) và (4) suy ra \(AK\) là đường vuông góc chung của hai đường thẳng chéo nhau \(AB,SD\).

Tam giác \(ACD\) vuông tại \(D\) nên \(AD = \sqrt {A{C^2} - C{D^2}} = \sqrt {3{a^2} - 2{a^2}} = a\).

Tam giác \(SAD\) vuông tại \(A\) có đường cao \(AK\) nên

\(\frac{1}{{A{K^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{D^2}}} \Rightarrow AK = \frac{{SA \cdot AD}}{{\sqrt {S{A^2} + A{D^2}} }} = \frac{{2a \cdot a}}{{\sqrt {4{a^2} + {a^2}} }} = \frac{{2a\sqrt 5 }}{5}{\rm{. }}\)

Vậy \(d(AB,SD) = AK = \frac{{2a\sqrt 5 }}{5}\).

c) Diện tích đáy hình chóp là: \({S_{ABCD}} = a \cdot a\sqrt 2 = {a^2}\sqrt 2 \).

Thể tích khối chóp cần tìm là:

\({V_{S.ABCD}} = \frac{1}{3}SA \cdot {S_{ABCD}} = \frac{1}{3} \cdot 2a \cdot {a^2}\sqrt 2 = \frac{{2\sqrt 2 {a^3}}}{3}{\rm{ }}\)(đơn vị thể tích).

Đáp án: a) Đúng; b) Sai;   c) Đúng;   d) Sai.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho lăng trụ đều \(ABC.A'B'C'\). Biết rằng góc giữa \(\left( {A'BC} \right)\) và \(\left( {ABC} \right)\) là \(30^\circ \), tam giác \(A'BC\) có diện tích bằng \(8\). Tính thể tích khối lăng trụ \(ABC.A'B'C'\) (kết quả làm tròn đến hàng phần mười).

Xem đáp án » 31/05/2025 41

Câu 2:

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác vuông cân tại \(B\), \(AB = a\) và \(A'B = a\sqrt 3 \). Thể tích khối lăng trụ \(ABC.A'B'C'\) là 

Xem đáp án » 31/05/2025 34

Câu 3:

Cho hình chóp S.ABC có SA vuông góc với đáy, hai mặt phẳng (SAB) và (SBC) vuông góc với nhau, \(SB = a\sqrt 3 \), góc giữa SC và (SAB) là 45° và \(\widehat {ASB} = 30^\circ \).

a) Mặt phẳng (SAB) vuông góc với mặt phẳng (ABC).

b) Tam giác SBC vuông cân tại C.

c) Hai đường thẳng AB và CB vuông góc với nhau.

d) Nếu gọi thể tích khối chóp S.ABC là V thì tỷ số \(\frac{{{a^3}}}{V}\) bằng \(\frac{3}{8}\).

Xem đáp án » 31/05/2025 28

Câu 4:

Một khối rubik 3×3 (được chia làm 27 khối lập phương nhỏ) có dạng một hình lập phương với kích thước cạnh bằng 6 cm. Tìm thể tích của khối rubik đó, biết khoảng hở giữa các khối lập phương nhỏ không đáng kể.

Xem đáp án » 31/05/2025 26

Câu 5:

Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh 3 và đường chéo AC = 3. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa (SCD) và đáy bằng 45°. Tính thể tích của khối chóp S.ABCD (đơn vị thể tích).

Xem đáp án » 31/05/2025 26

Câu 6:

Cho hình chóp tứ giác \[S.ABCD\]có đáy\[ABCD\] là hình vuông cạnh \(a\), cạnh bên \[SA\] vuông góc với mặt phẳng đáy và \(SA = a\sqrt 2 \). Tính thể tích \(V\) của khối chóp \[S.ABCD\]

Xem đáp án » 31/05/2025 25

Câu 7:

Cho khối chóp \(S.ABC\) có \(SA\) vuông góc với đáy, \(SA = 4\), \(AB = 6\), \(BC = 10\) và \(CA = 8\). Tính thể tích \(V\) của khối chóp \(S.ABC\).

Xem đáp án » 31/05/2025 23
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay