Câu hỏi:
31/05/2025 13Cho hình chóp \(S.ABC\) có mặt bên \((SAB)\) vuông góc với mặt đáy và tam giác \(SAB\) đều cạnh \(2a\). Biết tam giác \(ABC\) vuông tại \(C\) và cạnh \(AC = a\sqrt 3 \). Khi đó:
a) \(SH \bot (ABC)\) với H là trung điểm của AB.
b) \(d(S,(ABC)) = a\sqrt 3 \).
c) \(d(C,(SAB)) = \frac{{a\sqrt 3 }}{3}\).
d) Thể tích của khối chóp \(S.ABC\) bằng \(\frac{{{a^3}}}{6}\).
Quảng cáo
Trả lời:
a) Gọi \(H\) là trung điểm \(AB\), mà tam giác \(SAB\) đều nên \(SH \bot AB\).
Ngoài ra \((SAB) \bot (ABC)\) nên \(SH \bot (ABC)\).
b) Ta có: \(d(S,(ABC)) = SH = \frac{{2a \cdot \sqrt 3 }}{2} = a\sqrt 3 (\)do tam giác \(SAB\) đều cạnh \(2a)\).
c) Kẻ đường cao \(CK\) của tam giác \(ABC\).
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{CK \bot AB}\\{CK \bot SH}\end{array} \Rightarrow CK \bot (SAB) \Rightarrow d(C,(SAB)) = CK} \right.\).
Xét tam giác \(ABC\) vuông tại \(C\) có:
\(BC = \sqrt {A{B^2} - A{C^2}} = \sqrt {4{a^2} - 3{a^2}} = a;CK = \frac{{CA \cdot CB}}{{AB}} = \frac{{a\sqrt 3 \cdot a}}{{2a}} = \frac{{a\sqrt 3 }}{2}\).
Vậy \(d(C,(SAB)) = CK = \frac{{a\sqrt 3 }}{2}\).
d) Diện tích đáy hình chóp là: \({S_{\Delta ABC}} = \frac{1}{2}AC \cdot BC = \frac{1}{2}a\sqrt 3 \cdot a = \frac{{{a^2}\sqrt 3 }}{2}\).
Thể tích khối chóp là: \({V_{S \cdot ABC}} = \frac{1}{3}SH \cdot {S_{\Delta ABC}} = \frac{1}{3} \cdot a\sqrt 3 \cdot \frac{{{a^2}\sqrt 3 }}{2} = \frac{{{a^3}}}{2}\).
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Sai.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
Đã bán 104
Đã bán 211
Đã bán 1k
Đã bán 218
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho lăng trụ đều \(ABC.A'B'C'\). Biết rằng góc giữa \(\left( {A'BC} \right)\) và \(\left( {ABC} \right)\) là \(30^\circ \), tam giác \(A'BC\) có diện tích bằng \(8\). Tính thể tích khối lăng trụ \(ABC.A'B'C'\) (kết quả làm tròn đến hàng phần mười).
Câu 2:
Câu 3:
Cho hình chóp S.ABC có SA vuông góc với đáy, hai mặt phẳng (SAB) và (SBC) vuông góc với nhau, \(SB = a\sqrt 3 \), góc giữa SC và (SAB) là 45° và \(\widehat {ASB} = 30^\circ \).
a) Mặt phẳng (SAB) vuông góc với mặt phẳng (ABC).
b) Tam giác SBC vuông cân tại C.
c) Hai đường thẳng AB và CB vuông góc với nhau.
d) Nếu gọi thể tích khối chóp S.ABC là V thì tỷ số \(\frac{{{a^3}}}{V}\) bằng \(\frac{3}{8}\).
Câu 4:
Một khối rubik 3×3 (được chia làm 27 khối lập phương nhỏ) có dạng một hình lập phương với kích thước cạnh bằng 6 cm. Tìm thể tích của khối rubik đó, biết khoảng hở giữa các khối lập phương nhỏ không đáng kể.
Câu 5:
Câu 6:
Câu 7:
Cho khối chóp \(S.ABC\) có \(SA\) vuông góc với đáy, \(SA = 4\), \(AB = 6\), \(BC = 10\) và \(CA = 8\). Tính thể tích \(V\) của khối chóp \(S.ABC\).
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận