Câu hỏi:

31/05/2025 42

Cho hình chóp \(S.ABC\) có mặt bên \((SAB)\) vuông góc với mặt đáy và tam giác \(SAB\) đều cạnh \(2a\). Biết tam giác \(ABC\) vuông tại \(C\) và cạnh \(AC = a\sqrt 3 \). Khi đó:

a) \(SH \bot (ABC)\) với H là trung điểm của AB.

b) \(d(S,(ABC)) = a\sqrt 3 \).

c) \(d(C,(SAB)) = \frac{{a\sqrt 3 }}{3}\).

d) Thể tích của khối chóp \(S.ABC\) bằng \(\frac{{{a^3}}}{6}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

V (ảnh 1)

a) Gọi \(H\) là trung điểm \(AB\), mà tam giác \(SAB\) đều nên \(SH \bot AB\).

Ngoài ra \((SAB) \bot (ABC)\) nên \(SH \bot (ABC)\).

b) Ta có: \(d(S,(ABC)) = SH = \frac{{2a \cdot \sqrt 3 }}{2} = a\sqrt 3 (\)do tam giác \(SAB\) đều cạnh \(2a)\).

c) Kẻ đường cao \(CK\) của tam giác \(ABC\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{CK \bot AB}\\{CK \bot SH}\end{array} \Rightarrow CK \bot (SAB) \Rightarrow d(C,(SAB)) = CK} \right.\).

Xét tam giác \(ABC\) vuông tại \(C\) có:

\(BC = \sqrt {A{B^2} - A{C^2}} = \sqrt {4{a^2} - 3{a^2}} = a;CK = \frac{{CA \cdot CB}}{{AB}} = \frac{{a\sqrt 3 \cdot a}}{{2a}} = \frac{{a\sqrt 3 }}{2}\).

Vậy \(d(C,(SAB)) = CK = \frac{{a\sqrt 3 }}{2}\).

d) Diện tích đáy hình chóp là: \({S_{\Delta ABC}} = \frac{1}{2}AC \cdot BC = \frac{1}{2}a\sqrt 3 \cdot a = \frac{{{a^2}\sqrt 3 }}{2}\).

Thể tích khối chóp là: \({V_{S \cdot ABC}} = \frac{1}{3}SH \cdot {S_{\Delta ABC}} = \frac{1}{3} \cdot a\sqrt 3 \cdot \frac{{{a^2}\sqrt 3 }}{2} = \frac{{{a^3}}}{2}\).

Đáp án: a) Đúng; b) Đúng;   c) Sai;   d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

V (ảnh 1)

Đặt \(AB = x,\left( {x > 0} \right)\), gọi \(M\) là trung điểm \(BC\).

DABC đều Þ AM ^ BC và AA' ^ BC Þ BC ^ (AA'M) Þ BC ^ A'M.

Ta có \[\left\{ \begin{array}{l}\left( {A'BC} \right) \cap \left( {ABC} \right) = BC\\AM \bot BC\\A'M \bot BC\end{array} \right. \Rightarrow \left( {\left( {A'BC} \right),\left( {ABC} \right)} \right) = \widehat {A'MA} = 30^\circ \].

Xét \(\Delta A'AM\), có \[A'M = \frac{{AM}}{{cos30^\circ }} = \frac{{x\sqrt 3 }}{2}.\frac{2}{{\sqrt 3 }} = x\].

\({S_{A'BC}} = 8 \Leftrightarrow \frac{1}{2}A'M.BC = 8 \Leftrightarrow {x^2} = 16 \Rightarrow x = 4\)

Suy ra \(A'A = AM.\tan 30^\circ = \frac{{4.\sqrt 3 }}{2}.\frac{1}{{\sqrt 3 }} = 2\); \({S_{ABC}} = \frac{{16.\sqrt 3 }}{4} = 4\sqrt 3 \).

Vậy \({V_{ABC.A'B'C'}} = A'A.{S_{ABC}} = 2.4\sqrt 3 = 8\sqrt 3 \approx 13,9\).

Trả lời: 13,9.

Lời giải

a) Mặt phẳng (SAB) vuông góc với mặt phẳng (ABC). (ảnh 1)

a) Theo giả thiết, DSAB vuông tại A có \(SB = a\sqrt 3 ;\widehat {ASB} = 30^\circ \).

Khi đó \(SA = SB.\cos 30^\circ = \frac{{3a}}{2}\)\(AB = SB.\sin 30^\circ = \frac{{a\sqrt 3 }}{2}\).

Do SA ^ (ABC) nên (SAB) ^ (ABC).

b) Vì (SAB) ^ (ABC) và (SAB) ^ (SBC) nên (SBC) ^ (ABC) .

Suy ra BC ^ (SAB) Þ (SC, (SAB)) = (SC, SB) = \(\widehat {CSB} = 45^\circ \).

Suy ra DSBC vuông cân tại B Þ BC = SB = \(a\sqrt 3 \).

c) BC ^ (SAB) Þ CB ^ AB Þ DABC vuông tại B.

d) Có \({S_{\Delta ABC}} = \frac{1}{2}AB.BC = \frac{{3{a^2}}}{4}\)\(V = \frac{1}{3}SA.{S_{\Delta ABC}} = \frac{{3{a^3}}}{8}\).

Vậy tỉ số \(\frac{{{a^3}}}{V} = \frac{8}{3}\).

Đáp án: a) Đúng; b) Sai;   c) Đúng;   d) Sai.

Câu 4

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác vuông cân tại \(B\), \(AB = a\) và \(A'B = a\sqrt 3 \). Thể tích khối lăng trụ \(ABC.A'B'C'\) là 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Cho hình chóp tứ giác \[S.ABCD\]có đáy\[ABCD\] là hình vuông cạnh \(a\), cạnh bên \[SA\] vuông góc với mặt phẳng đáy và \(SA = a\sqrt 2 \). Tính thể tích \(V\) của khối chóp \[S.ABCD\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay