Câu hỏi:

14/06/2025 8

Cho dãy số (an): \(\left\{ \begin{array}{l}{a_1} = 2\\{a_{n + 1}} = - 2{a_n}\end{array} \right.\)với n ℕ*.

a) (an) là một cấp số nhân với a1 = 2 và q = −2.

b) Số hạng thứ 8 của dãy bằng 256.

c) Số −2048 là một số hạng của dãy.

d) S10 = a1 + a2 + ... + a10 = −682.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Có \(q = \frac{{{a_{n + 1}}}}{{{a_n}}} =  - 2\).

Do đó (an) là một cấp số nhân với a1 = 2 và q = −2.

b) Ta có a8 = a1.q7 = 2.(−2)7 = −256.

c) Có an = a1.(−2)n – 1 = 2.(−2)n – 1 = −(−2)n   .

Suy ra −(−2)n  = −2048 Þ không có giá trị của n. Do đó −2048 không là số hạng của dãy.

d) Ta có \({S_{10}} = {a_1}.\frac{{1 - {q^{10}}}}{{1 - q}} = 2.\frac{{1 - {{\left( { - 2} \right)}^{10}}}}{{1 - \left( { - 2} \right)}} =  - 682\).

Đáp án: a) Đúng;   b) Sai;   c) Sai;   d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho một cấp số nhân có các số hạng đều không âm thỏa mãn \({u_2} = 6\), \({u_4} = 24\). Tính tổng của \(12\) số hạng đầu tiên của cấp số nhân đó.     

Lời giải

A

\({u_4} = {u_2}.{q^2}\)\( \Rightarrow q =  \pm 2\). Do cấp số nhân có các số hạng không âm nên \(q = 2\).

Ta có \({S_{12}} = {u_1}.\frac{{1 - {q^{12}}}}{{1 - q}}\)\( = 3.\frac{{1 - {2^{12}}}}{{1 - 2}}\)\( = 3\left( {{2^{12}} - 1} \right)\).

Lời giải

Số lượng vi khuẩn tăng lên là cấp số nhân (un) với công bội q = 2.

Ta có: u6 = 64000 Þ u1q5 = 64000 Þ u1 = 2000.

Sau n phút thì số lượng vi khuẩn là un + 1.

un + 1 = 2048000 Þ u1qn = 2048000 Þ 2000.2n = 2048000 Þ n = 10.

Vậy sau 10 phút thì có được 2048000 con.

Trả lời: 10.

Câu 3

Cho cấp số nhân \[\left( {{u_n}} \right)\]\[{u_1} = 3\]\[q = - 2\]. Số \(192\) là số hạng thứ mấy của cấp số nhân đã cho?     

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

PHẦN I. TRẮC NGHIỆM NHIỀU LỰA CHỌN

Dãy số nào sau đây không phải là cấp số nhân?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho cấp số nhân có u1 = −3; \(q = \frac{2}{3}\). Tính u5.     

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay