Câu hỏi:
16/06/2025 20Tổng tất cả các nghiệm của phương trình \[\left( {2{x^2} - 5x + 2} \right)\left[ {{{\log }_x}\left( {7x - 6} \right) - 2} \right] = 0\] bằng
Quảng cáo
Trả lời:
Điều kiện \[\left\{ \begin{array}{l}0 < x \ne 1\\x > \frac{6}{7}\end{array} \right. \Leftrightarrow \frac{6}{7} < x \ne 1\,\,\left( * \right)\].
Phương trình \[\left( {2{x^2} - 5x + 2} \right)\left[ {{{\log }_x}\left( {7x - 6} \right) - 2} \right] = 0 \Leftrightarrow \left[ \begin{array}{l}2{x^2} - 5x + 2 = 0\,\\{\log _x}\left( {7x - 6} \right) - 2 = 0\end{array} \right.\,\].
+ Phương trình \[2{x^2} - 5x + 2 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = \frac{1}{2}\end{array} \right.\]. Kết hợp với điều kiện \[\left( * \right) \Rightarrow x = 2\].
+ Phương trình \[{\log _x}\left( {7x - 6} \right) - 2 = 0 \Leftrightarrow 7x - 6 = {x^2} \Leftrightarrow {x^2} - 7x + 6 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 6\end{array} \right.\].
Kết hợp với điều kiện \[\left( * \right) \Rightarrow x = 6\].
Vậy phương trình đã cho có hai nghiệm \[x = 2;\,\,x = 6\] suy ra tổng các nghiệm bằng \[8\]. Chọn C.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \[{3^{{x^2} + 1}} = 9 \Leftrightarrow {3^{{x^2} + 1}} = {3^2} \Leftrightarrow {x^2} + 1 = 2 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 1\end{array} \right.\]. Chọn B.
Lời giải
Ta có \({2^x} + {2^{x + 1}} \le {3^x} + {3^{x - 1}} \Leftrightarrow {2^x} + 2 \cdot {2^x} \le {3^x} + \frac{1}{3}{3^x} \Leftrightarrow 3 \cdot {2^x} \le \frac{4}{3} \cdot {3^x}\)
\( \Leftrightarrow \frac{{{2^x}}}{{{3^x}}} \le \frac{4}{9} \Leftrightarrow {\left( {\frac{2}{3}} \right)^x} \le {\left( {\frac{2}{3}} \right)^2} \Rightarrow x \ge 2\).
Vậy tập nghiệm của bất phương trình là \(\left[ {2; + \infty } \right)\). Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.