PHẦN II. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho phương trình \(\tan x = \sqrt 3 .\)
a) Điều kiện xác định của phương trình \(x \ne \frac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
b) \(x = \frac{\pi }{3}\) là một nghiệm của phương trình.
c) Tập nghiệm của phương trình là \(\left\{ {\frac{{2\pi }}{3} + k2\pi ;\frac{{ - 2\pi }}{3} + k2\pi |k \in \mathbb{Z}} \right\}.\)
d) Phương trình có hai nghiệm trên đoạn \(\left[ {0;2\pi } \right].\)
PHẦN II. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho phương trình \(\tan x = \sqrt 3 .\)
a) Điều kiện xác định của phương trình \(x \ne \frac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
b) \(x = \frac{\pi }{3}\) là một nghiệm của phương trình.
c) Tập nghiệm của phương trình là \(\left\{ {\frac{{2\pi }}{3} + k2\pi ;\frac{{ - 2\pi }}{3} + k2\pi |k \in \mathbb{Z}} \right\}.\)
d) Phương trình có hai nghiệm trên đoạn \(\left[ {0;2\pi } \right].\)
Quảng cáo
Trả lời:
Điều kiện xác định của phương trình: \(x \ne \frac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
Ta có \(\tan x = \sqrt 3 \Leftrightarrow x = \frac{\pi }{3} + k\pi ,k \in \mathbb{Z}\).
Vì \(x \in \left[ {0;2\pi } \right] \Rightarrow x \in \left\{ {\frac{\pi }{3};\frac{{4\pi }}{3}} \right\}\).
Đáp án: a) Đúng, b) Đúng, c) Sai, d) Đúng.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(\sin \left( {{\rm{cos}}x} \right) = 0 \Leftrightarrow {\rm{cos}}x = k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
Mà .
\( \Rightarrow \)có \(643\) nghiệm thỏa mãn bài toán.
Đáp án: \(643\).
Lời giải
Ta có \[\sin x = \sin \frac{\pi }{6} \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k2\pi \\x = \frac{{5\pi }}{6} + k2\pi \end{array} \right.,k \in \mathbb{Z}\].
Vì \[x \in \left[ {0;\pi } \right] \Rightarrow \left[ \begin{array}{l}x = \frac{\pi }{6}\\x = \frac{{5\pi }}{6}\end{array} \right. \Rightarrow \frac{\pi }{6} + \frac{{5\pi }}{6} = \pi \]. Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.