Câu hỏi:

16/06/2025 36

Tập nghiệm của bất phương trình \(2{\log _3}\left( {4x - 5} \right) \le {\log _3}\left( {18x + 27} \right)\) là 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(2{\log _3}\left( {4x - 5} \right) \le {\log _3}\left( {18x + 27} \right)\left( * \right)\).

Điều kiện \(\left\{ \begin{array}{l}4x - 5 > 0\\18x + 27 > 0\end{array} \right. \Leftrightarrow x > \frac{5}{4}\).

Với điều kiện trên, \(\left( * \right) \Leftrightarrow {\log _3}{\left( {4x - 5} \right)^2} \le {\log _3}\left( {18x + 27} \right)\)

\( \Leftrightarrow {\left( {4x - 5} \right)^2} \le 18x + 27\)\( \Leftrightarrow \frac{{29 - 3\sqrt {97} }}{{16}} \le x \le \frac{{29 + 3\sqrt {97} }}{{16}}\).

Kết hợp điều kiện ta được tập nghiệm là \(S = \left( {\frac{5}{4}\,;\,\frac{{29 + 3\sqrt {97} }}{{16}}} \right]\). Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Điều kiện xác định: \(2x + 1 > 0 \Leftrightarrow x > - \frac{1}{2}\).

Ta có \({\rm{lo}}{{\rm{g}}_2}\left( {2x + 1} \right) \le 1 \Leftrightarrow 2x + 1 \le 2 \Leftrightarrow 2x \le 1 \Leftrightarrow x \le \frac{1}{2}\).

Kết hợp với điều kiện ta được: \( - \frac{1}{2} < x \le \frac{1}{2}\).

Vậy tập nghiệm của bất phương trình là \(\left( { - \frac{1}{2};\frac{1}{2}} \right]\). Chọn C.

Câu 2

Lời giải

Ta có \[\sin \left( {x + \frac{\pi }{3}} \right) + \sin 2x = 0 \Leftrightarrow \sin \left( {x + \frac{\pi }{3}} \right) = - \sin 2x \Leftrightarrow \sin \left( {x + \frac{\pi }{3}} \right) = \sin \left( { - 2x} \right)\]

\[ \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{3} = - 2x + k2\pi \\x + \frac{\pi }{3} = \pi + 2x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{9} + k\frac{{2\pi }}{3}\\x = - \frac{{2\pi }}{3} - k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\]. Chọn C.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP