Câu hỏi:

16/06/2025 57 Lưu

Tìm tất cả các giá trị thực của tham số \(m\) để bất phương trình \({\left( {\frac{2}{e}} \right)^{{x^2} + 2mx + 1}} \le {\left( {\frac{e}{2}} \right)^{2x - 3m}}\) nghiệm đúng với mọi \(x\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \({\left( {\frac{2}{e}} \right)^{{x^2} + 2mx + 1}} \le {\left( {\frac{e}{2}} \right)^{2x - 3m}}\)\( \Leftrightarrow {\left( {\frac{e}{2}} \right)^{ - {x^2} - 2mx - 1}} \le {\left( {\frac{e}{2}} \right)^{2x - 3m}}\)

\( \Leftrightarrow - {x^2} - 2mx - 1 \le 2x - 3m \Leftrightarrow {x^2} + 2\left( {m + 1} \right)x - 3m + 1 \ge 0\).

Yêu cầu bài toán \( \Leftrightarrow {x^2} + 2\left( {m + 1} \right)x - 3m + 1 \ge 0,\forall x \in \mathbb{R}\)

\( \Leftrightarrow \left\{ \begin{array}{l}a > 0\\\Delta ' \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}1 > 0\\{\left( {m + 1} \right)^2} + 3m - 1 \le 0\end{array} \right.\)

\( \Leftrightarrow {m^2} + 5m \le 0 \Leftrightarrow - 5 \le m \le 0\). Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Ta có \(2\cos \left( {x + \frac{\pi }{4}} \right) - \sqrt 2 = 0 \Leftrightarrow \)\(\cos \left( {x + \frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2} \Leftrightarrow \cos \left( {x + \frac{\pi }{4}} \right) = \cos \frac{\pi }{4}\)

\[ \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{4} = \frac{\pi }{4} + k2\pi \\x + \frac{\pi }{4} = - \frac{\pi }{4} + k2\pi \end{array} \right.\,\left( {k \in \mathbb{Z}} \right) \Leftrightarrow \left[ \begin{array}{l}x = k2\pi \\x = - \frac{\pi }{2} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\]. Chọn A.

Câu 2

Lời giải

Ta có \[\sin \left( {x + \frac{\pi }{3}} \right) + \sin 2x = 0 \Leftrightarrow \sin \left( {x + \frac{\pi }{3}} \right) = - \sin 2x \Leftrightarrow \sin \left( {x + \frac{\pi }{3}} \right) = \sin \left( { - 2x} \right)\]

\[ \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{3} = - 2x + k2\pi \\x + \frac{\pi }{3} = \pi + 2x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{9} + k\frac{{2\pi }}{3}\\x = - \frac{{2\pi }}{3} - k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\]. Chọn C.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP