Câu hỏi:

16/06/2025 21

Cho cấp số cộng \[\frac{1}{3},\,\, - \frac{1}{6},\, - \frac{2}{3},\, - \frac{7}{6}\]. Tìm công sai của cấp số cộng đó. 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có công sai \[d = \left( { - \frac{7}{6}} \right) - \left( { - \frac{2}{3}} \right) = \left( { - \frac{2}{3}} \right) - \left( { - \frac{1}{6}} \right) = \left( { - \frac{1}{6}} \right) - \frac{1}{3} = - \frac{1}{2} = - 0,5\]. Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho cấp số cộng \(\left( {{u_n}} \right)\), biết \({u_1} =  - 5\), \(d = 2\). Số \(81\) là số hạng thứ bao nhiêu của cấp số cộng? 

Lời giải

Ta có \({u_n} = {u_1} + \left( {n - 1} \right)d \Leftrightarrow 81 = - 5 + \left( {n - 1} \right) \cdot 2 \Leftrightarrow n = 44\). Chọn B.

Lời giải

Gọi \(q\) là công bội của cấp số nhân đã cho.

Ta có u1+u5=51u2+u6=102 u1+u1q4=51u1q+u1q5=102 u11+q4=51(1)u1q1+q4=102(2)

Nhận xét: Nếu \({u_1} = 0\) hay \(q = 0\) thì (1) và (2) đều không thoả mãn, vì vậy ta có \({u_1}q \ne 0\). Chia theo vế (2) cho (1), ta được: \(q = 2\). Thay \(q = 2\) vào (1) suy ra \({u_1} = \frac{{51}}{{1 + {2^4}}} = 3\).

Công thức số hạng tổng quát của cấp số nhân là: \({u_n} = 3 \cdot {2^{n - 1}}\). Ta có \({u_4} = 3 \cdot {2^3} = 24\).

Xét \({u_n} = 12\,288 \Leftrightarrow 3 \cdot {2^{n - 1}} = 12\,288 \Leftrightarrow {2^{n - 1}} = {2^{12}} \Leftrightarrow n = 13\).

Vậy \(12\,288\) là số hạng thứ 13 của cấp số nhân đã cho.

Tổng tám số hạng đầu của cấp số nhân là: \({S_8} = \frac{{{u_1}\left( {1 - {q^8}} \right)}}{{1 - q}} = \frac{{3 \cdot \left( {1 - {2^8}} \right)}}{{1 - 2}} = 765\).

Đáp án:           a) Đúng,          b) Sai,             c) Sai,              d) Đúng.

Câu 3

Cho cấp số cộng \(\left( {{u_n}} \right)\) với \({u_3} =  - 1\) và \({u_4} = 2\). Công sai \(d\)của cấp số cộng \(\left( {{u_n}} \right)\) là 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Tính tổng \(S = 9 + 99 + 999 + ... + 999...9\) (số hạng cuối có n số 9) ta được kết quả là 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

PHẦN I. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Trong các dãy số \[\left( {{u_n}} \right)\] cho bởi công thức số hạng tổng quát \[{u_n}\] sau, dãy số nào là một cấp số nhân?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay