Câu hỏi:
16/06/2025 37
Cho cấp số cộng \[\frac{1}{3},\,\, - \frac{1}{6},\, - \frac{2}{3},\, - \frac{7}{6}\]. Tìm công sai của cấp số cộng đó.
Quảng cáo
Trả lời:
Ta có công sai \[d = \left( { - \frac{7}{6}} \right) - \left( { - \frac{2}{3}} \right) = \left( { - \frac{2}{3}} \right) - \left( { - \frac{1}{6}} \right) = \left( { - \frac{1}{6}} \right) - \frac{1}{3} = - \frac{1}{2} = - 0,5\]. Chọn C.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \({u_1},\,\,q\) là số hạng đầu và công bội của cấp số nhân \(\left( {{u_n}} \right)\) đã cho.
Ta có \({u_2} = {u_1}q,\,\,{u_6} = {u_1}{q^5}\) nên \(\frac{{{u_6}}}{{{u_2}}} = \frac{{{q^5}}}{q} \Leftrightarrow {q^4} = 16 \Rightarrow q = \pm 2 \Rightarrow {u_1} = \frac{4}{{ \pm 2}} = \pm 2\).
\( \Rightarrow \left[ \begin{array}{l}{u_n} = - 2 \cdot {\left( { - 2} \right)^{n - 1}}\\{u_n} = 2 \cdot {2^{n - 1}}\end{array} \right. \Rightarrow \left[ \begin{array}{l}{u_n} = {\left( { - 2} \right)^n}\\{u_n} = {2^n}\end{array} \right..\) Chọn A.
Lời giải
Ta có \(d = {u_4} - {u_3} = 2 - \left( { - 1} \right) = 3.\) Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.