Câu hỏi:

16/06/2025 11

Cho cấp số nhân \(\left( {{u_n}} \right)\), biết công bội bằng \(2\), \({u_n} = 2048\) và \({S_n} = 4092\).

a) \({u_{n - 1}} = 1042\).

b) \({u_1} \cdot {2^n} = 4096\).

c) \[{u_1} + {u_2} + {u_3} + ... + {u_{n - 1}} = 2044\].

d) Số hạng thứ bảy của cấp số là \({u_7} = 526\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \({u_{n - 1}} = \frac{{{u_n}}}{q} = \frac{{2048}}{2} = 1024\). \({u_n} = {u_1} \cdot {q^{n - 1}} \Leftrightarrow 2048 = {u_1} \cdot {2^{n - 1}} \Leftrightarrow 4096 = {u_1} \cdot {2^n}\).

Ta có \({u_1} + {u_2} + {u_3} + .... + {u_{n - 1}} + {u_n} = {S_n} = 4092\).

\( \Rightarrow {u_1} + {u_2} + {u_3} + ... + {u_{n - 1}} = 4092 - {u_n} = 4092 - 2048 = 2044\).

Ta có \(\left\{ \begin{array}{l}{u_1} \cdot \frac{{1 - {q^n}}}{{1 - q}} = 4092\\{u_1} \cdot {q^{n - 1}} = 2048\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}\left( {1 - {q^n}} \right) = 4092\left( {1 - q} \right)\\{u_1} \cdot {q^n} = 2048q\end{array} \right.\).

Từ đó suy ra \({u_1} - 2048q = 4092 - 4092q \Leftrightarrow {u_1} = - 2044q + 4092 = - 2044 \cdot 2 + 4092 = 4\).

Khi đó \({u_7} = {u_1} \cdot {q^6} = 4 \cdot {2^6} = 256\).

Đáp án:           a) Sai,             b) Đúng,         c) Đúng,          d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho cấp số cộng \(\left( {{u_n}} \right)\), biết \({u_1} =  - 5\), \(d = 2\). Số \(81\) là số hạng thứ bao nhiêu của cấp số cộng? 

Lời giải

Ta có \({u_n} = {u_1} + \left( {n - 1} \right)d \Leftrightarrow 81 = - 5 + \left( {n - 1} \right) \cdot 2 \Leftrightarrow n = 44\). Chọn B.

Lời giải

Điều kiện: \[k \in \mathbb{N},k \le 12\].

\(C_{14}^k\), \(C_{14}^{k + 1}\), \(C_{14}^{k + 2}\) theo thứ tự đó lập thành một cấp số cộng nên ta có

\(C_{14}^k + C_{14}^{k + 2} = 2C_{14}^{k + 1}\) \( \Leftrightarrow \frac{{14!}}{{k!\left( {14 - k} \right)!}} + \frac{{14!}}{{\left( {k + 2} \right)!\left( {12 - k} \right)!}} = 2\frac{{14!}}{{\left( {k + 1} \right)!\left( {13 - k} \right)!}}\)

\( \Leftrightarrow \frac{1}{{\left( {14 - k} \right)\left( {13 - k} \right)}} + \frac{1}{{\left( {k + 1} \right)\left( {k + 2} \right)}} = \frac{2}{{\left( {k + 1} \right)\left( {13 - k} \right)}}\)

\( \Leftrightarrow \left( {14 - k} \right)\left( {13 - k} \right) + \left( {k + 1} \right)\left( {k + 2} \right) = 2\left( {14 - k} \right)\left( {k + 2} \right)\)

\( \Leftrightarrow {k^2} - 12k + 32 = 0 \Leftrightarrow \left[ \begin{array}{l}k = 4{\rm{ (tm)}}\\k = 8{\rm{ (tm)}}\end{array} \right.\).

Tổng tất cả các phần tử của \(S = 4 + 8 = 12\).

Đáp án: \(12\).

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay