Giá trị lớn nhất của hàm số \(y = {x^3} - 3x + 4\) trên đoạn \(\left[ { - 2;0} \right]\) bằng
Quảng cáo
Trả lời:
Hàm số liên tục và xác định trên đoạn \(\left[ { - 2;0} \right]\). Ta có \(y' = 3{x^2} - 3\).
\(y' = 0 \Leftrightarrow 3{x^2} - 3 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x = 1 \notin \left[ { - 2;0} \right]\\x = - 1 \in \left[ { - 2;0} \right]\end{array} \right.\).
Có \(y\left( { - 2} \right) = 2\); \(y\left( { - 1} \right) = 6\) và \(y\left( 0 \right) = 4\). Do đó \(\mathop {\max }\limits_{\left[ { - 2;0} \right]} y = y\left( { - 1} \right) = 6\). Chọn D.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(\left( { - \infty ;0} \right)\).
Lời giải
Từ đồ thị, ta thấy hàm số nghịch biến trên khoảng \(\left( {0;2} \right)\). Chọn D.
Câu 2
Lời giải
Vì \(f'\left( x \right) = 0\) có 3 nghiệm lẻ nên hàm số \(y = f\left( x \right)\) có 3 cực trị. Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



