Câu hỏi:
17/06/2025 55
Cho hình chóp \[S.ABCD\] có đáy là hình thang, \[AB = 2\], \[AD = DC = CB = 1\], \[SA\] vuông góc với mặt phẳng đáy và \[SA = 3\]. Gọi \[M\] là trung điểm của \[AB\]. Tính khoảng cách giữa hai đường thẳng \[SB\] và \[DM\] (viết kết quả dưới dạng số thập phân).
Cho hình chóp \[S.ABCD\] có đáy là hình thang, \[AB = 2\], \[AD = DC = CB = 1\], \[SA\] vuông góc với mặt phẳng đáy và \[SA = 3\]. Gọi \[M\] là trung điểm của \[AB\]. Tính khoảng cách giữa hai đường thẳng \[SB\] và \[DM\] (viết kết quả dưới dạng số thập phân).
Quảng cáo
Trả lời:
Ta có \[M\] là trung điểm của \[AB\].
Theo giả thiết suy ra \[ABCD\] là nửa lục giác đều nội tiếp đường tròn đường kính \[AB\]\[ \Rightarrow \left\{ \begin{array}{l}\widehat {ACB} = 90^\circ ;\widehat {ABC} = 60^\circ \\AC = \sqrt 3 \end{array} \right.\].
Vì \[DM{\rm{//}}BC \Rightarrow DM{\rm{//}}\left( {SBC} \right)\].
Do đó \[d\left( {DM,SB} \right) = d\left( {DM,\left( {SBC} \right)} \right) = d\left( {M,\left( {SBC} \right)} \right) = \frac{1}{2}d\left( {A,\left( {SBC} \right)} \right)\] (vì \[MB = \frac{1}{2}AB\]).
Kẻ \[AH \bot SC\] tại \[H\]. Ta có \[\left\{ \begin{array}{l}BC \bot AC\\BC \bot SA\end{array} \right. \Rightarrow BC \bot \left( {SAC} \right)\]\[ \Rightarrow AH \bot BC\].
Khi đó \[\left\{ \begin{array}{l}AH \bot SC\\AH \bot BC\end{array} \right. \Rightarrow AH \bot \left( {SBC} \right) \Rightarrow d\left( {A,\left( {SBC} \right)} \right) = AH\].
Xét tam giác \[SAC\] vuông tại \[A\], ta có \[A{H^2} = \frac{{A{C^2} \cdot S{A^2}}}{{A{C^2} + S{A^2}}} = \frac{{{{\left( {\sqrt 3 } \right)}^2} \cdot {3^2}}}{{{{\left( {\sqrt 3 } \right)}^2} + {3^2}}} = \frac{9}{4}\]\[ \Rightarrow AH = \frac{3}{2}\].
Vậy \[d\left( {DM,SB} \right) = \frac{1}{2}d\left( {A,\left( {SBC} \right)} \right) = \frac{1}{2}AH = \frac{3}{4} = 0,75\].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Theo bài ra, ta có \(AB = 5,A'B' = 2,CC' = 3\).
Có \(ABCD\) là hình vuông \( \Rightarrow CO = \frac{1}{2}AC = \frac{{5\sqrt 2 }}{2}\).
Có \(A'B'C'D'\) là hình vuông \( \Rightarrow C'O' = \frac{1}{2}A'C' = \frac{{2\sqrt 2 }}{2} = \sqrt 2 \).
Kẻ \(C'H \bot OC\) tại \(H\). Suy ra \(OHC'O'\) là hình chữ nhật.
\( \Rightarrow OH = O'C' = \sqrt 2 ,\,\,CH = OC - OH = \frac{{5\sqrt 2 }}{2} - \sqrt 2 = \frac{{3\sqrt 2 }}{2}\).
\( \Rightarrow OO' = C'H = \sqrt {C{{C'}^2} - C{H^2}} = \sqrt {{3^2} - {{\left( {\frac{{3\sqrt 2 }}{2}} \right)}^2}} = \frac{{3\sqrt 2 }}{2}\).
Diện tích đáy lớn là \(S = A{B^2} = {5^2} = 25\,\,{\rm{(}}{{\rm{m}}^{\rm{2}}}{\rm{)}}\).
Diện tích đáy bé là \(S' = A'{B'^2} = {2^2} = 4\,\,{\rm{(}}{{\rm{m}}^{\rm{2}}}{\rm{)}}\).
Thể tích khối chóp cụt là: \(V = \frac{1}{3}h\left( {S + \sqrt {SS'} + S'} \right) = \frac{1}{3} \cdot \frac{{3\sqrt 2 }}{2}\left( {25 + \sqrt {25 \cdot 4} + 4} \right) = \frac{{39\sqrt 2 }}{2}\,\,{\rm{(}}{{\rm{m}}^{\rm{3}}}{\rm{)}}\).
Số tiền để mua bê tông tươi làm chân tháp là:
\(\frac{{39\sqrt 2 }}{2} \cdot 1\,470\,000 \approx 40\,538\,432{\rm{\;}}\)(đồng) \( \approx 41\,\)(triệu đồng).
Đáp án: \[41\].
Lời giải
Vì tam giác \(SAB\) đều nên \(SH \bot AB\).
Mà \(\left( {SAB} \right) \bot \left( {ABCD} \right)\) nên \(SH \bot \left( {ABCD} \right)\).
Tam giác \(SAB\) đều cạnh \(a \Rightarrow SH = \frac{{a\sqrt 3 }}{2}\).
Diện tích hình thoi \(ABCD\):
\({S_{ABCD}} = 2{S_{\Delta ABC}} = 2 \cdot \frac{1}{2}AB \cdot BC \cdot \sin B = \frac{{{a^2}\sqrt 3 }}{2}\).
Vậy thể tích khối chóp \(S.ABCD\): \({V_{S.ABCD}} = \frac{1}{3}SH \cdot {S_{ABCD}} = \frac{1}{3} \cdot \frac{{a\sqrt 3 }}{2} \cdot \frac{{{a^2}\sqrt 3 }}{2} = \frac{{{a^3}}}{4}\).
Dễ thấy \(\Delta ABC\) đều \( \Rightarrow AC = BC = a \Rightarrow \)các tam giác \(SAC\) và \(SBC\) lần lượt cân tại \(A\) và \(B\).
Gọi \(I\) là trung điểm của \(SC \Rightarrow \left\{ \begin{array}{l}SC \bot AI\\SC \bot BI.\end{array} \right.\)
Suy ra \(\widehat {AIB}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {A,SC,B} \right]\).
Ta có \(S{C^2} = S{H^2} + C{H^2} = \frac{{3{a^2}}}{2} \Rightarrow S{I^2} = I{C^2} = \frac{{3{a^2}}}{8}\).
Suy ra \(I{A^2} = S{A^2} - S{I^2} = \frac{{5{a^2}}}{8}\). Tương tự \(I{B^2} = \frac{{5{a^2}}}{8}\).
Do đó \(\cos \alpha = \cos \widehat {AIB} = \frac{{I{A^2} + I{B^2} - A{B^2}}}{{2 \cdot IA \cdot IB}} = \frac{1}{5}\).
Ta có \(\Delta ACD\)đều \( \Rightarrow AN \bot CD \Rightarrow AN \bot AB \Rightarrow AN \bot \left( {SAB} \right) \Rightarrow \left( {SAN} \right) \bot \left( {SAB} \right)\).
\(\Delta SAB\) đều \( \Rightarrow BM \bot SA \Rightarrow BM \bot \left( {SAN} \right)\).
Dựng \(MK \bot SN\) tại \(K \Rightarrow MK\) là đoạn vuông góc chung của \(BM\) và \(SN\).
Suy ra \(MK = d\left( {BM,SN} \right)\).
Ta có \(MK = MS \cdot \sin \widehat {MSK} = MS \cdot \frac{{AN}}{{SN}} = MS \cdot \frac{{AN}}{{\sqrt {S{A^2} + A{N^2}} }} = \frac{a}{2} \cdot \frac{{\frac{{a\sqrt 3 }}{2}}}{{\sqrt {{a^2} + {{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}} }} = \frac{{a\sqrt {21} }}{{14}}\).
Vậy \(d\left( {BM,SN} \right) = \frac{{a\sqrt {21} }}{{14}}\).
Đáp án: a) Đúng, b) Sai, c) Sai, d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.