Câu hỏi:
17/06/2025 12Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật với \(AD = 2AB = 2a\). Biết hai mặt phẳng \(\left( {SAB} \right),\)\(\left( {SAD} \right)\) cùng vuông góc với mặt phẳng \(\left( {ABCD} \right)\) và \(SA = \frac{{a\sqrt {15} }}{{15}}\). Số đo góc giữa đường thẳng \(SB\) và mặt phẳng \(\left( {SAC} \right)\) bằng bao nhiêu độ?
Quảng cáo
Trả lời:
Do \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAD} \right) \bot \left( {ABCD} \right)\end{array} \right. \Rightarrow SA \bot \left( {ABCD} \right).\)
Ta kẻ \(BH \bot AC,\,H \in \,AC\).
\( \Rightarrow \left\{ \begin{array}{l}BH \bot AC\\BH \bot SA\,\,\,\left( {{\rm{do}}\,\,SA \bot \left( {ABCD} \right)\,} \right)\end{array} \right. \Rightarrow BH \bot \left( {SAC} \right).\)
Suy ra \(SH\) là hình chiếu vuông góc của \(SB\) trên mặt phẳng \(\left( {SAC} \right)\).
Khi đó \(\left( {SB,\left( {SAC} \right)} \right) = \left( {SB,\,SH} \right) = \widehat {BSH}\).
Ta có: \(SB = \sqrt {S{A^2} + A{B^2}} = \frac{{4a\sqrt {15} }}{{15}},\,\,\frac{1}{{B{H^2}}} = \frac{1}{{B{A^2}}} + \frac{1}{{B{C^2}}} \Rightarrow BH = \frac{{2a\sqrt 5 }}{5}\).
Xét tam giác \(SHB\) vuông tại \(H\) ta có: \(\sin \widehat {BSH} = \frac{{BH}}{{SB}} = \frac{{\sqrt 3 }}{2} \Rightarrow \widehat {BSH} = 60^\circ \).
Vậy \(\left( {SB,\,\left( {SAC} \right)} \right) = 60^\circ \).
Đáp án: \[60\].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Theo bài ra, ta có \(AB = 5,A'B' = 2,CC' = 3\).
Có \(ABCD\) là hình vuông \( \Rightarrow CO = \frac{1}{2}AC = \frac{{5\sqrt 2 }}{2}\).
Có \(A'B'C'D'\) là hình vuông \( \Rightarrow C'O' = \frac{1}{2}A'C' = \frac{{2\sqrt 2 }}{2} = \sqrt 2 \).
Kẻ \(C'H \bot OC\) tại \(H\). Suy ra \(OHC'O'\) là hình chữ nhật.
\( \Rightarrow OH = O'C' = \sqrt 2 ,\,\,CH = OC - OH = \frac{{5\sqrt 2 }}{2} - \sqrt 2 = \frac{{3\sqrt 2 }}{2}\).
\( \Rightarrow OO' = C'H = \sqrt {C{{C'}^2} - C{H^2}} = \sqrt {{3^2} - {{\left( {\frac{{3\sqrt 2 }}{2}} \right)}^2}} = \frac{{3\sqrt 2 }}{2}\).
Diện tích đáy lớn là \(S = A{B^2} = {5^2} = 25\,\,{\rm{(}}{{\rm{m}}^{\rm{2}}}{\rm{)}}\).
Diện tích đáy bé là \(S' = A'{B'^2} = {2^2} = 4\,\,{\rm{(}}{{\rm{m}}^{\rm{2}}}{\rm{)}}\).
Thể tích khối chóp cụt là: \(V = \frac{1}{3}h\left( {S + \sqrt {SS'} + S'} \right) = \frac{1}{3} \cdot \frac{{3\sqrt 2 }}{2}\left( {25 + \sqrt {25 \cdot 4} + 4} \right) = \frac{{39\sqrt 2 }}{2}\,\,{\rm{(}}{{\rm{m}}^{\rm{3}}}{\rm{)}}\).
Số tiền để mua bê tông tươi làm chân tháp là:
\(\frac{{39\sqrt 2 }}{2} \cdot 1\,470\,000 \approx 40\,538\,432{\rm{\;}}\)(đồng) \( \approx 41\,\)(triệu đồng).
Đáp án: \[41\].
Lời giải
Ta tạo thành được hình hộp chữ nhật \(ABCD.A'B'C'D'\) như sau:
Theo bài ra ta có \(AA' = BB' = CC' = DD' = 16\,{\rm{cm}}\).
Do đó, \(A'B'C'D'\) là hình vuông có \(A'B' = 50 - 2 \cdot 16 = 18\,\,{\rm{(cm)}}\).
Vậy \({V_{ABCD.A'B'C'D'}} = A'{B'^2} \cdot AA' = {18^2} \cdot 16 = 5184\,\,{\rm{(c}}{{\rm{m}}^{\rm{3}}}{\rm{)}}\). Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải