Câu hỏi:

17/06/2025 38 Lưu

Cho hình chóp \[S.ABCD\] có đáy \(ABCD\) là hình bình hành tâm \(O\). Gọi \(I\) là điểm thuộc \(SO\) sao cho \(SI = \frac{1}{3}SO\). Mặt phẳng \(\left( \alpha \right)\) thay đổi đi qua \(B\)\(I\) cắt các cạnh \(SA,\,SC,\,SD\) lần lượt tại \(M,\,N,\,P\). Gọi \(m,\,n\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của tỉ số \(\frac{{{V_{S.BMPN}}}}{{{V_{S.ABCD}}}}\). Tính giá trị của biểu thức \(25m + 15n\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

V (ảnh 1)  V (ảnh 2)

Áp dụng định lý Menelaus ta có \(\frac{{PS}}{{PD}} \cdot \frac{{IO}}{{IS}} \cdot \frac{{BD}}{{BO}} = 1 \Leftrightarrow \frac{{PS}}{{PD}} \cdot 2 \cdot 2 = 1 \Leftrightarrow \frac{{PS}}{{PD}} = \frac{1}{4} \Rightarrow \frac{{SD}}{{SP}} = 5\).

Tính giá trị của biểu thức   25 m + 15 n  . (ảnh 1)

Khi \(N \equiv C\), áp dụng định lý Menelaus, có \(\frac{{MS}}{{MA}} \cdot \frac{{IO}}{{IS}} \cdot \frac{{CA}}{{CO}} = 1 \Leftrightarrow \frac{{MS}}{{MA}} = \frac{{IS}}{{IO}} \cdot \frac{{CO}}{{CA}} = \frac{1}{4} \Rightarrow \frac{{MS}}{{MA}} = \frac{1}{4}\).

, khi đó ta có  với \(1 \le x \le 5\).

Ta có \(x\left( {6 - x} \right) =  - {\left( {x - 3} \right)^2} + 9\) mà \(1 \le x \le 5 \Rightarrow 5 \le x\left( {6 - x} \right) \le 9 \Rightarrow \frac{1}{{15}} \le \frac{3}{{5x\left( {6 - x} \right)}} \le \frac{3}{{25}}\).

 và . Vậy \(25m + 15n = 25 \cdot \frac{3}{{25}} + 15 \cdot \frac{1}{{15}} = 4\).

Đáp án: \[4\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

V (ảnh 1)

Ta có \[M\] là trung điểm của \[AB\].

Theo giả thiết suy ra \[ABCD\] là nửa lục giác đều nội tiếp đường tròn đường kính \[AB\]\[ \Rightarrow \left\{ \begin{array}{l}\widehat {ACB} = 90^\circ ;\widehat {ABC} = 60^\circ \\AC = \sqrt 3 \end{array} \right.\].

Vì \[DM{\rm{//}}BC \Rightarrow DM{\rm{//}}\left( {SBC} \right)\].

Do đó \[d\left( {DM,SB} \right) = d\left( {DM,\left( {SBC} \right)} \right) = d\left( {M,\left( {SBC} \right)} \right) = \frac{1}{2}d\left( {A,\left( {SBC} \right)} \right)\] (vì \[MB = \frac{1}{2}AB\]).

Kẻ \[AH \bot SC\] tại \[H\]. Ta có \[\left\{ \begin{array}{l}BC \bot AC\\BC \bot SA\end{array} \right. \Rightarrow BC \bot \left( {SAC} \right)\]\[ \Rightarrow AH \bot BC\].

Khi đó \[\left\{ \begin{array}{l}AH \bot SC\\AH \bot BC\end{array} \right. \Rightarrow AH \bot \left( {SBC} \right) \Rightarrow d\left( {A,\left( {SBC} \right)} \right) = AH\].

Xét tam giác \[SAC\] vuông tại \[A\], ta có \[A{H^2} = \frac{{A{C^2} \cdot S{A^2}}}{{A{C^2} + S{A^2}}} = \frac{{{{\left( {\sqrt 3 } \right)}^2} \cdot {3^2}}}{{{{\left( {\sqrt 3 } \right)}^2} + {3^2}}} = \frac{9}{4}\]\[ \Rightarrow AH = \frac{3}{2}\].

Vậy \[d\left( {DM,SB} \right) = \frac{1}{2}d\left( {A,\left( {SBC} \right)} \right) = \frac{1}{2}AH = \frac{3}{4} = 0,75\].

Lời giải

C (ảnh 1)

Vì tam giác \(SAB\) đều nên \(SH \bot AB\).

Mà \(\left( {SAB} \right) \bot \left( {ABCD} \right)\) nên \(SH \bot \left( {ABCD} \right)\).

Tam giác \(SAB\) đều cạnh \(a \Rightarrow SH = \frac{{a\sqrt 3 }}{2}\).

Diện tích hình thoi \(ABCD\):

\({S_{ABCD}} = 2{S_{\Delta ABC}} = 2 \cdot \frac{1}{2}AB \cdot BC \cdot \sin B = \frac{{{a^2}\sqrt 3 }}{2}\).

Vậy thể tích khối chóp \(S.ABCD\): \({V_{S.ABCD}} = \frac{1}{3}SH \cdot {S_{ABCD}} = \frac{1}{3} \cdot \frac{{a\sqrt 3 }}{2} \cdot \frac{{{a^2}\sqrt 3 }}{2} = \frac{{{a^3}}}{4}\).

Dễ thấy \(\Delta ABC\) đều \( \Rightarrow AC = BC = a \Rightarrow \)các tam giác \(SAC\) và \(SBC\) lần lượt cân tại \(A\) và \(B\).

Gọi \(I\) là trung điểm của \(SC \Rightarrow \left\{ \begin{array}{l}SC \bot AI\\SC \bot BI.\end{array} \right.\)

Suy ra \(\widehat {AIB}\) là góc phẳng nhị diện của góc nhị diện \(\left[ {A,SC,B} \right]\).

Ta có \(S{C^2} = S{H^2} + C{H^2} = \frac{{3{a^2}}}{2} \Rightarrow S{I^2} = I{C^2} = \frac{{3{a^2}}}{8}\).

Suy ra \(I{A^2} = S{A^2} - S{I^2} = \frac{{5{a^2}}}{8}\). Tương tự \(I{B^2} = \frac{{5{a^2}}}{8}\).

Do đó \(\cos \alpha  = \cos \widehat {AIB} = \frac{{I{A^2} + I{B^2} - A{B^2}}}{{2 \cdot IA \cdot IB}} = \frac{1}{5}\).

Ta có \(\Delta ACD\)đều \( \Rightarrow AN \bot CD \Rightarrow AN \bot AB \Rightarrow AN \bot \left( {SAB} \right) \Rightarrow \left( {SAN} \right) \bot \left( {SAB} \right)\).

\(\Delta SAB\) đều \( \Rightarrow BM \bot SA \Rightarrow BM \bot \left( {SAN} \right)\).

Dựng \(MK \bot SN\) tại \(K \Rightarrow MK\) là đoạn vuông góc chung của \(BM\) và \(SN\).

Suy ra \(MK = d\left( {BM,SN} \right)\).

Ta có \(MK = MS \cdot \sin \widehat {MSK} = MS \cdot \frac{{AN}}{{SN}} = MS \cdot \frac{{AN}}{{\sqrt {S{A^2} + A{N^2}} }} = \frac{a}{2} \cdot \frac{{\frac{{a\sqrt 3 }}{2}}}{{\sqrt {{a^2} + {{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}} }} = \frac{{a\sqrt {21} }}{{14}}\).

Vậy \(d\left( {BM,SN} \right) = \frac{{a\sqrt {21} }}{{14}}\).

Đáp án:       a) Đúng,      b) Sai,         c) Sai,          d) Đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP