Một khu phố có 50 hộ gia đình trong đó có 18 hộ nuôi chó, 16 hộ nuôi mèo và 7 hộ nuôi cả chó và mèo. Chọn ngẫu nhiên một hộ trong khu phố trên, tính xác suất để hộ đó nuôi chó hoặc nuôi mèo.
Một khu phố có 50 hộ gia đình trong đó có 18 hộ nuôi chó, 16 hộ nuôi mèo và 7 hộ nuôi cả chó và mèo. Chọn ngẫu nhiên một hộ trong khu phố trên, tính xác suất để hộ đó nuôi chó hoặc nuôi mèo.
Câu hỏi trong đề: Đề ôn luyện Toán theo Chủ đề 8. Xác suất (Đề số 1) !!
Quảng cáo
Trả lời:
Gọi \(A\) là biến cố: “Chọn được hộ nuôi chó” và \(B\) là biến cố: “Chọn được hộ nuôi mèo”.
Theo đề ta có \(P\left( A \right) = \frac{{18}}{{50}} = \frac{9}{{25}};P\left( B \right) = \frac{{16}}{{50}} = \frac{8}{{25}};P\left( {AB} \right) = \frac{7}{{50}}\).
Xác suất để chọn được hộ nuôi chó hoặc nuôi mèo là:
\(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{9}{{25}} + \frac{8}{{25}} - \frac{7}{{50}} = \frac{{27}}{{50}} = 0,54\).
Đáp án: \(0,54\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(A\) là biến cố “một khách hàng mua điện thoại kèm ốp”;
\(B\) là biến cố “một khách hàng mua điện thoại Samsung”.
Theo đề ta có: \(P\left( B \right) = 75\% = 0,75;P\left( {\overline B } \right) = 1 - 0,75 = 0,25\);
\(P\left( {A|B} \right) = 60\% = 0,6;P\left( {A|\overline B } \right) = 30\% = 0,3\).
Ta có \(P\left( A \right) = P\left( B \right) \cdot P\left( {A|B} \right) + P\left( {\overline B } \right) \cdot P\left( {A|\overline B } \right) = 0,75 \cdot 0,6 + 0,25 \cdot 0,3 = 0,525\).
Đáp án: a) Đúng, b) Sai, c) Đúng, d) Đúng.
Lời giải
Gọi \(V\) là biến cố “thành viên được chọn biết chơi cờ vua”;
\(T\) là biến cố “thành viên được chọn biết chơi cờ tướng”.
Theo đề ta có số thành viên biết chơi cả cờ vua và cờ tướng là: \(25 + 20 - 35 = 10\).
Xác suất để thành viên đó biết chơi cờ tướng là \(P\left( T \right) = \frac{{20}}{{35}} = \frac{4}{7}\).
Xác suất để thành viên đó biết chơi cả cờ vua và cờ tướng là \(P\left( {V \cap T} \right) = \frac{{10}}{{35}} = \frac{2}{7}\).
Do đó \(P\left( {V|T} \right) = \frac{{P\left( {V \cap T} \right)}}{{P\left( T \right)}} = \frac{2}{7}:\frac{4}{7} = \frac{1}{2}\). Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.