Có hai đội thi đấu môn Bắn súng. Đội I có 5 vận động viên, đội II có 7 vận động viên. Xác suất đạt huy chương vàng của mỗi vận động viên đội I và đội II tương ứng là 0,65 và 0,55. Chọn ngẫu nhiên một vận động viên. Giả sử vận động được chọn đạt huy chương vàng. Tính xác suất để vận động viên này thuộc đội I (làm tròn kết quả đến hàng phần trăm).
Có hai đội thi đấu môn Bắn súng. Đội I có 5 vận động viên, đội II có 7 vận động viên. Xác suất đạt huy chương vàng của mỗi vận động viên đội I và đội II tương ứng là 0,65 và 0,55. Chọn ngẫu nhiên một vận động viên. Giả sử vận động được chọn đạt huy chương vàng. Tính xác suất để vận động viên này thuộc đội I (làm tròn kết quả đến hàng phần trăm).
Câu hỏi trong đề: Đề ôn luyện Toán theo Chủ đề 8. Xác suất (Đề số 1) !!
Quảng cáo
Trả lời:
Gọi \(A\) là biến cố “Vận động viên đó thuộc đội I”;
\(B\) là biến cố “Vận động viên đó đạt huy chương vàng”.
Theo đề ta có \(P\left( A \right) = \frac{5}{{12}} \Rightarrow P\left( {\overline A } \right) = \frac{7}{{12}}\); \(P\left( {B|A} \right) = 0,65;P\left( {B|\overline A } \right) = 0,55\).
Ta có \(P\left( B \right) = P\left( A \right) \cdot P\left( {B|A} \right) + P\left( {\overline A } \right) \cdot P\left( {B|\overline A } \right) = \frac{5}{{12}} \cdot 0,65 + \frac{7}{{12}} \cdot 0,55 = \frac{{71}}{{120}}\).
Khi đó \(P\left( {A|B} \right) = \frac{{P\left( A \right) \cdot P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{\frac{5}{{12}} \cdot 0,65}}{{\frac{{71}}{{120}}}} = \frac{{65}}{{142}} \approx 0,46\).
Đáp án: \(0,46\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(A\) là biến cố “một khách hàng mua điện thoại kèm ốp”;
\(B\) là biến cố “một khách hàng mua điện thoại Samsung”.
Theo đề ta có: \(P\left( B \right) = 75\% = 0,75;P\left( {\overline B } \right) = 1 - 0,75 = 0,25\);
\(P\left( {A|B} \right) = 60\% = 0,6;P\left( {A|\overline B } \right) = 30\% = 0,3\).
Ta có \(P\left( A \right) = P\left( B \right) \cdot P\left( {A|B} \right) + P\left( {\overline B } \right) \cdot P\left( {A|\overline B } \right) = 0,75 \cdot 0,6 + 0,25 \cdot 0,3 = 0,525\).
Đáp án: a) Đúng, b) Sai, c) Đúng, d) Đúng.
Lời giải
Gọi \(V\) là biến cố “thành viên được chọn biết chơi cờ vua”;
\(T\) là biến cố “thành viên được chọn biết chơi cờ tướng”.
Theo đề ta có số thành viên biết chơi cả cờ vua và cờ tướng là: \(25 + 20 - 35 = 10\).
Xác suất để thành viên đó biết chơi cờ tướng là \(P\left( T \right) = \frac{{20}}{{35}} = \frac{4}{7}\).
Xác suất để thành viên đó biết chơi cả cờ vua và cờ tướng là \(P\left( {V \cap T} \right) = \frac{{10}}{{35}} = \frac{2}{7}\).
Do đó \(P\left( {V|T} \right) = \frac{{P\left( {V \cap T} \right)}}{{P\left( T \right)}} = \frac{2}{7}:\frac{4}{7} = \frac{1}{2}\). Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.