Một lớp học có 30 học sinh trong đó có 16 bạn nam và 14 bạn nữ. Cô giáo chủ nhiệm chọn ngẫu nhiên ra 3 bạn vào đội cờ đỏ. Tính xác suất để cả 3 bạn đó đều là nam hoặc nữ.
Câu hỏi trong đề: Đề ôn luyện Toán theo Chủ đề 8. Xác suất (Đề số 2) !!
Quảng cáo
Trả lời:

Chọn 3 bạn trong 30 bạn có \(C_{30}^3\) cách chọn \( \Rightarrow n\left( \Omega \right) = C_{30}^3\).
Gọi \(A\) là biến cố “Chọn 3 bạn nam” \( \Rightarrow n\left( A \right) = C_{16}^3 \Rightarrow P\left( A \right) = \frac{{C_{16}^3}}{{C_{30}^3}}\).
Gọi \(B\) là biến cố “Chọn 3 bạn nữ” \( \Rightarrow n\left( B \right) = C_{14}^3 \Rightarrow P\left( B \right) = \frac{{C_{14}^3}}{{C_{30}^3}}\).
Gọi \(C\) là biến cố “Chọn 3 bạn đều là nam hoặc nữ” \( \Rightarrow C = A \cup B\).
Do \(A\) và \(B\) xung khắc nên \(P\left( C \right) = P\left( A \right) + P\left( B \right) = \frac{{C_{16}^3}}{{C_{30}^3}} + \frac{{C_{14}^3}}{{C_{30}^3}} \approx 0,228\). Chọn C.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Gọi \(A\) là biến cố “thẻ thứ nhất trúng thưởng”; \(B\) là biến cố “thẻ thứ hai trúng thưởng”.
Khi đó \(A \cap B\) là biến cố “cả hai thẻ đều là hai thẻ trúng thưởng”.
Ta có \(P\left( A \right) = \frac{2}{{30}} = \frac{1}{{15}}\) và \(P\left( {B|A} \right) = \frac{1}{{29}}\).
Mà \(P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} \Rightarrow P\left( {AB} \right) = P\left( A \right) \cdot P\left( {B|A} \right) = \frac{1}{{25}} \cdot \frac{1}{{29}} = \frac{1}{{435}}\). Chọn D.
Lời giải
Ta có \(n\left( \Omega \right) = 6 \cdot 6 = 36\).
Gọi \(A\) là biến cố “Số chấm xuất hiện trên hai con xúc xắc hơn kém nhau 2 chấm”.
\(A = \left\{ {\left( {1;3} \right);\left( {2;4} \right);\left( {3;5} \right);\left( {4;6} \right);\left( {3;1} \right);\left( {4;2} \right);\left( {5;3} \right);\left( {6;4} \right)} \right\} \Rightarrow n\left( A \right) = 8\).
Do đó \(P\left( A \right) = \frac{8}{{36}} = \frac{2}{9}\).
\(B\) là biến cố “Tích số chấm xuất hiện trên hai con xúc xắc chia hết cho 5”.
\[B = \left\{ {\left( {1;5} \right);\left( {2;5} \right);\left( {3;5} \right);\left( {4;5} \right);\left( {5;5} \right);\left( {6;5} \right);\left( {5;1} \right);\left( {5;2} \right);\left( {5;3} \right);\left( {5;4} \right);\left( {5;6} \right)} \right\}\]\( \Rightarrow n\left( B \right) = 11\).
Do đó \(P\left( B \right) = \frac{{11}}{{36}}\).
\(C\) là biến cố “Tích số chấm xuất hiện trên hai con xúc xắc là một số chẵn”.
\(\overline C \) là biến cố “Tích số chấm xuất hiện trên hai con xúc xắc là một số lẻ” \( \Rightarrow n\left( {\overline C } \right) = 3 \cdot 3 = 9\).
Suy ra \(P\left( {\overline C } \right) = \frac{1}{4} \Rightarrow P\left( C \right) = 1 - \frac{1}{4} = \frac{3}{4}\).
\(D\) là biến cố “Tổng số chấm xuất hiện trên hai con xúc xắc là số lẻ”.
\(\overline D \) là biến cố “Tổng số chấm xuất hiện trên hai con xúc xắc là số chẵn”.
Ta có tổng số chấm xuất hiện trên hai con xúc xắc là số chẵn khi và chỉ khi cả hai số đó đều là số lẻ hoặc đều là số chẵn.
Suy ra \(n\left( {\overline D } \right) = 2 \cdot 3 \cdot 3 = 18\). Do đó \(P\left( {\overline D } \right) = \frac{{18}}{{36}} = \frac{1}{2} \Rightarrow P\left( D \right) = \frac{1}{2}\).
Đáp án: a) Đúng, b) Đúng, c) Sai, d) Đúng.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.