Câu hỏi:

18/06/2025 10

Một lớp học có 30 học sinh trong đó có 16 bạn nam và 14 bạn nữ. Cô giáo chủ nhiệm chọn ngẫu nhiên ra 3 bạn vào đội cờ đỏ. Tính xác suất để cả 3 bạn đó đều là nam hoặc nữ.     

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn 3 bạn trong 30 bạn có \(C_{30}^3\) cách chọn \( \Rightarrow n\left( \Omega  \right) = C_{30}^3\).

Gọi \(A\) là biến cố “Chọn 3 bạn nam” \( \Rightarrow n\left( A \right) = C_{16}^3 \Rightarrow P\left( A \right) = \frac{{C_{16}^3}}{{C_{30}^3}}\).

Gọi \(B\) là biến cố “Chọn 3 bạn nữ” \( \Rightarrow n\left( B \right) = C_{14}^3 \Rightarrow P\left( B \right) = \frac{{C_{14}^3}}{{C_{30}^3}}\).

Gọi \(C\) là biến cố “Chọn 3 bạn đều là nam hoặc nữ” \( \Rightarrow C = A \cup B\).

Do \(A\) và \(B\) xung khắc nên \(P\left( C \right) = P\left( A \right) + P\left( B \right) = \frac{{C_{16}^3}}{{C_{30}^3}} + \frac{{C_{14}^3}}{{C_{30}^3}} \approx 0,228\). Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn 2 trong 15 nam làm tổ trưởng và tổ phó có \(A_{15}^2\) cách.

Chọn 3 tổ viên, trong đó có nữ

+) Chọn 1 nữ và 2 nam có \(5 \cdot C_{13}^2\) cách,

+) Chọn 2 nữ và 1 nam có \(13 \cdot C_5^2\) cách,

+) Chọn 3 nữ có \(C_5^3\) cách.

Vậy có \(A_{15}^2\left( {5 \cdot C_{13}^2 + 13 \cdot C_5^2 + C_5^3} \right) = 111300\) cách.

Khi đó \(\left\{ \begin{array}{l}a = 1\\b = 3\end{array} \right. \Rightarrow T = ab + {a^2} = 4\).

Đáp án: \(4\).

Lời giải

Theo đề ta có \(P\left( {B|A} \right) = 0,9 \Rightarrow P\left( {\overline B |A} \right) = 1 - P\left( {B|A} \right) = 1 - 0,9 = 0,1\).

Có \(P\left( {AB} \right) = P\left( A \right) \cdot P\left( {B|A} \right) = 0,8 \cdot 0,9 = 0,72\).

\(\overline A \overline B \) là biến cố “Cả hai thí nghiệm đều không thành công”.

Theo giả thiết có \(P\left( {\overline A } \right) = 1 - 0,8 = 0,2\) và \(P\left( {\overline B |\overline A } \right) = 1 - P\left( {B|\overline A } \right) = 1 - 0,5 = 0,5\).

Vậy xác suất để cả hai thí nghiệm không thành công là:

\(P\left( {\overline A \overline B } \right) = P\left( {\overline A } \right) \cdot P\left( {\overline B |\overline A } \right) = 0,2 \cdot 0,5 = 0,1\).

Đáp án:       a) Đúng,      b) Sai,         c) Đúng,      d) Đúng.

Câu 3

PHẦN I. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Từ các chữ số 1; 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay