Câu hỏi:

18/06/2025 62

Trong một hộp kín có 30 thẻ Ticket, trong đó có 2 thẻ trúng thưởng. Bạn Mai Linh được chọn lên bốc thăm lần lượt hai thẻ, không trả lại. Xác suất để cả hai thẻ đều là hai thẻ trúng thưởng là:     

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi \(A\) là biến cố “thẻ thứ nhất trúng thưởng”; \(B\) là biến cố “thẻ thứ hai trúng thưởng”.

Khi đó \(A \cap B\) là biến cố “cả hai thẻ đều là hai thẻ trúng thưởng”.

Ta có \(P\left( A \right) = \frac{2}{{30}} = \frac{1}{{15}}\) và \(P\left( {B|A} \right) = \frac{1}{{29}}\).

Mà \(P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} \Rightarrow P\left( {AB} \right) = P\left( A \right) \cdot P\left( {B|A} \right) = \frac{1}{{25}} \cdot \frac{1}{{29}} = \frac{1}{{435}}\). Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo đề ta có \(P\left( {B|A} \right) = 0,9 \Rightarrow P\left( {\overline B |A} \right) = 1 - P\left( {B|A} \right) = 1 - 0,9 = 0,1\).

Có \(P\left( {AB} \right) = P\left( A \right) \cdot P\left( {B|A} \right) = 0,8 \cdot 0,9 = 0,72\).

\(\overline A \overline B \) là biến cố “Cả hai thí nghiệm đều không thành công”.

Theo giả thiết có \(P\left( {\overline A } \right) = 1 - 0,8 = 0,2\) và \(P\left( {\overline B |\overline A } \right) = 1 - P\left( {B|\overline A } \right) = 1 - 0,5 = 0,5\).

Vậy xác suất để cả hai thí nghiệm không thành công là:

\(P\left( {\overline A \overline B } \right) = P\left( {\overline A } \right) \cdot P\left( {\overline B |\overline A } \right) = 0,2 \cdot 0,5 = 0,1\).

Đáp án:       a) Đúng,      b) Sai,         c) Đúng,      d) Đúng.

Lời giải

Ta có \(n\left( \Omega  \right) = 6 \cdot 6 = 36\).

Gọi \(A\) là biến cố “Số chấm xuất hiện trên hai con xúc xắc hơn kém nhau 2 chấm”.

\(A = \left\{ {\left( {1;3} \right);\left( {2;4} \right);\left( {3;5} \right);\left( {4;6} \right);\left( {3;1} \right);\left( {4;2} \right);\left( {5;3} \right);\left( {6;4} \right)} \right\} \Rightarrow n\left( A \right) = 8\).

Do đó \(P\left( A \right) = \frac{8}{{36}} = \frac{2}{9}\).

\(B\) là biến cố “Tích số chấm xuất hiện trên hai con xúc xắc chia hết cho 5”.

\[B = \left\{ {\left( {1;5} \right);\left( {2;5} \right);\left( {3;5} \right);\left( {4;5} \right);\left( {5;5} \right);\left( {6;5} \right);\left( {5;1} \right);\left( {5;2} \right);\left( {5;3} \right);\left( {5;4} \right);\left( {5;6} \right)} \right\}\]\( \Rightarrow n\left( B \right) = 11\).

Do đó \(P\left( B \right) = \frac{{11}}{{36}}\).

\(C\) là biến cố “Tích số chấm xuất hiện trên hai con xúc xắc là một số chẵn”.

\(\overline C \) là biến cố “Tích số chấm xuất hiện trên hai con xúc xắc là một số lẻ” \( \Rightarrow n\left( {\overline C } \right) = 3 \cdot 3 = 9\).

Suy ra \(P\left( {\overline C } \right) = \frac{1}{4} \Rightarrow P\left( C \right) = 1 - \frac{1}{4} = \frac{3}{4}\).

\(D\) là biến cố “Tổng số chấm xuất hiện trên hai con xúc xắc là số lẻ”.

\(\overline D \) là biến cố “Tổng số chấm xuất hiện trên hai con xúc xắc là số chẵn”.

Ta có tổng số chấm xuất hiện trên hai con xúc xắc là số chẵn khi và chỉ khi cả hai số đó đều là số lẻ hoặc đều là số chẵn.

Suy ra \(n\left( {\overline D } \right) = 2 \cdot 3 \cdot 3 = 18\). Do đó \(P\left( {\overline D } \right) = \frac{{18}}{{36}} = \frac{1}{2} \Rightarrow P\left( D \right) = \frac{1}{2}\).

Đáp án:       a) Đúng,      b) Đúng,     c) Sai,          d) Đúng.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP