Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Đặt n2 – 2n + 2020 = a2 với \(a \in {\mathbb{N}^*}\)

Suy ra (n – 1)2 + 2019 = a2

Khi đó 2019 = (a – n + 1)(a + n – 1)

Với \(a \in {\mathbb{N}^*},n \in \mathbb{N}\)thì a + n – 1 > 0

Suy ra a – n + 1 > 0. Vậy a + n – 1 > a – n + 1 > 0

Mà tích của chúng bằng 2019 nên ta có các TH sau:

TH1: a + n – 1 = 2019; a – n + 1 = 1 nên n = 1010 (thỏa mãn)

TH2: a + n – 1 = 673, a – n + 1 = 3 nên n = 336

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

Đổi 40 km/h = \[\frac{{100}}{9}\]m/s

Chu vi của bánh xe đạp là:

C = D × π = 55π (cm)

Quãng đường xe đạp đi được trong 25 s là:

1 009 × 25 = 25 009 (m)

Với tốc độ 40 km/h thì trong 25 s bánh xe quay được số vòng là:

25 009 : 0,55π ≈ 160,8 (vòng)

Đáp số: 160,8 vòng

Lời giải

Lời giải:

Gọi chiều dài và chiều rộng của trang sách là x và y (cm). Ta có diện tích trang sách là xy = 600.

Do có lề trên và lề dưới là 3 cm, lề trái và lề phải là 2 cm, diện tích phần chữ in là (x ‒ 4)(y ‒ 6)

Từ xy = 600, ta có \[y = \frac{{600}}{x}.\] Thay vào diện tích phần chữ in, ta được:

\[S\left( x \right) = \left( {x - 4} \right)\left( {\frac{{600}}{x} - 6} \right) = 600 - 6x - \frac{{2400}}{x} + 24 = - 6x - \frac{{2400}}{x} + 624\]

Để diện tích phần chữ in lớn nhất, ta tìm đạo hàm của S(x) và cho bằng 0

\[S'\left( x \right) = - 6 + \frac{{2400}}{{{x^2}}} = 0\]

x2 = 400      

Suy ra x = 20 (vì x > 0)

Thay x = 20 và \[y = \frac{{600}}{x}\] ta được y = 30 cm.

Chiều dài trang giấy là x = 20 cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP