Một doanh nghiệp sản xuất độc quyền một loại sản phẩm. Giả sử khi sản xuất và bán hết x sản phẩm (0 < x ≤ 2500), tổng số tiền doanh nghiệp thu được là f(x) = 2006x ‒ x2 và tổng chi phí là g(x) = x2 + 1438x ‒ 1209 (đơn vị: nghìn đồng). Giả sử mức thuế phụ thu trên một đơn vị sản phẩm bán được là t (nghìn đồng) (0 < t < 320). Giá trị của t bằng bao nhiêu nghìn đồng để nhà nước nhận số tiền thuế phụ thu lớn nhất và doanh nghiệp cũng nhận được lợi nhuận lớn nhất theo mức thuế phụ thu đó?
Một doanh nghiệp sản xuất độc quyền một loại sản phẩm. Giả sử khi sản xuất và bán hết x sản phẩm (0 < x ≤ 2500), tổng số tiền doanh nghiệp thu được là f(x) = 2006x ‒ x2 và tổng chi phí là g(x) = x2 + 1438x ‒ 1209 (đơn vị: nghìn đồng). Giả sử mức thuế phụ thu trên một đơn vị sản phẩm bán được là t (nghìn đồng) (0 < t < 320). Giá trị của t bằng bao nhiêu nghìn đồng để nhà nước nhận số tiền thuế phụ thu lớn nhất và doanh nghiệp cũng nhận được lợi nhuận lớn nhất theo mức thuế phụ thu đó?
Quảng cáo
Trả lời:

Lời giải:
Ta có lợi nhuận là
P(x) = f(x) ‒ g(x) ‒ xt
= 2006x ‒ x2 ‒ (x2 + 1438x ‒ 1209) ‒ xt
= ‒2x2 + 568x ‒ xt + 1209
= ‒2x2 + (568 ‒ t)x + 1209.
Đồ thị hàm số P(x) là một parabol có bề lõm hướng xuống dưới (do a = ‒2 < 0).
Do đó P(x) lớn nhất tại đỉnh parabol, hay \[x = - \frac{b}{{2a}} = - \frac{{568 - t}}{{2 \cdot \left( { - 2} \right)}} = \frac{{568 - t}}{4}.\]
Số tiền thuế thu được khi đó là \[xt = \frac{{568 - t}}{4} = - \frac{{{t^2}}}{4} + 142t = h\left( t \right).\]
\[h'\left( t \right) = - \frac{1}{2}t + 142 = 0\] mê, t = 248.
Vậy giá trị t cần tìm là 248.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
Đổi 40 km/h = \[\frac{{100}}{9}\]m/s
Chu vi của bánh xe đạp là:
C = D × π = 55π (cm)
Quãng đường xe đạp đi được trong 25 s là:
1 009 × 25 = 25 009 (m)
Với tốc độ 40 km/h thì trong 25 s bánh xe quay được số vòng là:
25 009 : 0,55π ≈ 160,8 (vòng)
Đáp số: 160,8 vòng
Lời giải
Lời giải:
Gọi chiều dài và chiều rộng của trang sách là x và y (cm). Ta có diện tích trang sách là xy = 600.
Do có lề trên và lề dưới là 3 cm, lề trái và lề phải là 2 cm, diện tích phần chữ in là (x ‒ 4)(y ‒ 6)
Từ xy = 600, ta có \[y = \frac{{600}}{x}.\] Thay vào diện tích phần chữ in, ta được:
\[S\left( x \right) = \left( {x - 4} \right)\left( {\frac{{600}}{x} - 6} \right) = 600 - 6x - \frac{{2400}}{x} + 24 = - 6x - \frac{{2400}}{x} + 624\]
Để diện tích phần chữ in lớn nhất, ta tìm đạo hàm của S(x) và cho bằng 0
\[S'\left( x \right) = - 6 + \frac{{2400}}{{{x^2}}} = 0\]
x2 = 400
Suy ra x = 20 (vì x > 0)
Thay x = 20 và \[y = \frac{{600}}{x}\] ta được y = 30 cm.
Chiều dài trang giấy là x = 20 cm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.