Cho bảng dưới đây biết \(x\) và \(y\) là hai đại lượng tỉ lệ nghịch.

Giá trị ở ô trống trong bảng là
Quảng cáo
Trả lời:

Đáp án đúng là: B
Ta có hệ số tỉ lệ giữa \(y\) và \(x\) là \(10:\left( { - 2} \right) = - 5\)
Do đó, giá trị ở ô trống trong bảng là \( - 4:\left( { - 5} \right) = 0,8\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Ta có: \(BF = 2BE\) suy ra \(BE = EF.\)
Mà \(BE = 2ED\) nên \(EF = 2ED.\)
Do đó, \(D\) là trung điểm của \(EF.\)
Suy ra \(CD\) là đường trung tuyến của tam giác \(EFC\).
Vì \(K\) là trung điểm của \(CF\) nên \(EK\) là đường trung tuyến của \(\Delta EFC\).
Vì \(\Delta EFC\) có hai đường trung tuyến \(CD\) và \(EK\) cắt nhau tại \(G\) nên \(G\) là trọng tâm của \(\Delta EFC\).
b) Vì \(G\) là trọng tâm của \(\Delta EFC\) nên \(\frac{{GC}}{{DC}} = \frac{2}{3}\) và \(GE = \frac{2}{3}EK\).
Suy ra \(GK = \frac{1}{3}EK\) nên \(GE = 2GK\). Do đó, \(\frac{{GE}}{{GK}} = 2.\)
Lời giải
Đáp án đúng là: A
Áp dụng định lí tổng ba góc của một tam giác cho \(\Delta ABC\), ta được:
\(\widehat A + \widehat B + \widehat C = 180^\circ \), suy ra \(\widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right) = 180^\circ - \left( {50^\circ + 70^\circ } \right) = 60^\circ \).
Suy ra \(\widehat A < \widehat C < \widehat B\).
Vậy nên \(BC < AB < AC.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.