Câu hỏi:

30/06/2025 24 Lưu

1.1. Tìm \(x,\) biết:

     a) \(\frac{x}{{ - 6}} = \frac{3}{4};\)            b) \(\frac{{2x + 1}}{6} = \frac{{3 - x}}{9}\).

1.2. Hưởng ứng chương trình giúp đỡ các bạn học sinh vùng núi, ba lớp \(7A\), \(7B\), \(7C\) đã quyên góp được một số lượng quyển vở tỉ lệ với số học sinh của mỗi lớp. Biết rằng lớp \(7A\) có 32 học sinh, lớp \(7B\) có 35 học sinh, lớp \(7C\) có 36 học sinh và tổng số quyển vở lớp \(7A\) và \(7B\) quyên góp được nhiều hơn lớp \(7C\) là 62 quyển. Tính số quyển vở mỗi lớp quyên góp được.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

1.1.

a) \(\frac{x}{{ - 6}} = \frac{3}{4}\)

\(4x = 3.\left( { - 6} \right)\)

\(4x =  - 18\)

\(x = \frac{{ - 18}}{4}\)

\(x = \frac{{ - 9}}{2}\).

Vậy \(x = \frac{{ - 9}}{2}\).

b) \(\frac{{2x + 1}}{6} = \frac{{3 - x}}{9}\)

\(9\left( {2x + 1} \right) = 6\left( {3 - x} \right)\\(18x + 6x = 18 - 9\))

\(18x + 9 = 18 - 6x\)

 

\(24x = 9\)

\(x = \frac{3}{8}\).

Vậy \(x = \frac{3}{8}\).

1.2. Gọi \[a\], \(b\), \(c\) (quyển vở) lần lượt là số quyển vở lớp \(7A\), \(7B\), \(7C\) quyên góp được.

Theo đề, ta có tổng số quyển vở lớp \(7A\) và \(7B\) quyên góp được nhiều hơn lớp \(7C\) là 62 quyển, suy ra \(a + b - c = 62\).

Do số quyển vở mỗi lớp quyên góp được tỉ lệ thuận với số học sinh của lớp đó nên: \(\frac{a}{{32}} = \frac{b}{{35}} = \frac{c}{{36}}\).

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được: \(\frac{a}{{32}} = \frac{b}{{35}} = \frac{c}{{36}} = \frac{{a + b - c}}{{32 + 35 - 36}} = \frac{{62}}{{31}} = 2\).

Suy ra \(a = 32.2 = 64\); \(b = 35.2 = 70\); \(c = 36.2 = 72\).

Vậy số quyển vở lớp \(7A\), \(7B\), \(7C\) quyên góp được lần lượt là 64 quyển vở; 70 quyển vở và 72 quyển vở.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Thể tích khoảng không bên trong lều là: \(\frac{1}{2}.1,5.4.5 = 15{\rm{ }}\left( {{{\rm{m}}^3}} \right)\).

b) Diện tích bạt cần để dựng lều là tổng diện tích hai mặt bên và hai mặt đáy của hình lăng trụ đứng tam giác.

Do đó, diện tích bạt cần dùng để dựng lều là: \(2.2,5.5 + 2.\frac{1}{2}.1,5.4 = 31{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).

Lời giải

Cho \(\widehat {xOy}\) là góc nhọn. Trên tia \(Ox\) lấy điểm \(A\) (\(A \ne O\)). Trên tia \(Oy\) lấy điểm \(B\) sao cho \(OA = OB\). Từ \(A\) kẻ đường thẳng vuông góc với \(OA\), cắt \(Oy\) tại \(E\). Từ \(B\) kẻ đường thẳng vuông góc với \(OB\), cắt \(Ox\) tại \(F\). 	a) Chứng minh \(\Delta OAE = \Delta OBF\), từ đó suy ra \(OE = OF\). 	b) Gọi \(I\) là giao điểm của \(AE\) và \(BF\). Gọi \(M\) là trung điểm của \(EF\). So sánh \(EM\) và \(\frac{{EI + IF}}{2}.\) 	c) Chứng minh ba điểm \(O\), \(I\), \(M\) thẳng hàng. (ảnh 1)

a) Xét \(\Delta OAE\) và \(\Delta OBF\), có:

\(\widehat {OAE} = \widehat {OBF} = 90^\circ \)

\(OA = OB\) (giả thiết)

\(\widehat {AOB}\) là góc chung

Do đó, \(\Delta OAE = \Delta OBF\) (cgv – gn)

Suy ra \(OE = OF\) (hai cạnh tương ứng)

b) Áp dụng bất đẳng thức tam giác cho \(\Delta EIF\), ta được: \(EF < EI + IF\).

Mà \(2EM = EF\) (do \(M\) là trung điểm của \(EF\))

Suy ra \(2EM < EI + IF.\)

Vậy \(EM < \frac{{EI + IF}}{2}.\)

c) Xét \(\Delta EOF\) có hai đường cao \(FB\) và \(AE\) cắt nhau tại \(I\).

Suy ra \(I\) là trực tâm của \(\Delta OEF.\)

Do đó, \(OI \bot EF\) (1)

Xét \(\Delta OEM\) và \(\Delta OFM\), có:

\(OM\) là cạnh chung

\(ME = MF\) (do \(M\) là trung điểm của \(EF\))

\(OE = OF\) (câu a)

Do đó, \(\Delta OEM = \Delta OFM\) (c.c.c)

Suy ra \(\widehat {OME} = \widehat {OMF}\) (hai góc tương ứng)

Mà \(\widehat {OME} + \widehat {OMF} = 180^\circ \) (hai góc kề bù)

Do đó, \(\widehat {OME} = \widehat {OMF} = 90^\circ \) hay \(OM \bot EF\) (2)

Từ (1) và (2) suy ra \(O,I,M\) thẳng hàng.