Câu hỏi:

30/06/2025 9

Nhóm của An tổ chức đi dã ngoại, các bạn dự định dựng một cái lều trên bãi có dạng hình lăng trụ đứng tam giác với kích thước như hình bên.

a) Tính thể tích khoảng không bên trong lều.

b) Biết rằng phủ vải bốn phía, trừ mặt trên cỏ. Tính diện tích bạt cần phải có để đựng lều.
 Media VietJack

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Thể tích khoảng không bên trong lều là: \(\frac{1}{2}.1,5.4.5 = 15{\rm{ }}\left( {{{\rm{m}}^3}} \right)\).

b) Diện tích bạt cần để dựng lều là tổng diện tích hai mặt bên và hai mặt đáy của hình lăng trụ đứng tam giác.

Do đó, diện tích bạt cần dùng để dựng lều là: \(2.2,5.5 + 2.\frac{1}{2}.1,5.4 = 31{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho \(\widehat {xOy}\) là góc nhọn. Trên tia \(Ox\) lấy điểm \(A\) (\(A \ne O\)). Trên tia \(Oy\) lấy điểm \(B\) sao cho \(OA = OB\). Từ \(A\) kẻ đường thẳng vuông góc với \(OA\), cắt \(Oy\) tại \(E\). Từ \(B\) kẻ đường thẳng vuông góc với \(OB\), cắt \(Ox\) tại \(F\). 	a) Chứng minh \(\Delta OAE = \Delta OBF\), từ đó suy ra \(OE = OF\). 	b) Gọi \(I\) là giao điểm của \(AE\) và \(BF\). Gọi \(M\) là trung điểm của \(EF\). So sánh \(EM\) và \(\frac{{EI + IF}}{2}.\) 	c) Chứng minh ba điểm \(O\), \(I\), \(M\) thẳng hàng. (ảnh 1)

a) Xét \(\Delta OAE\) và \(\Delta OBF\), có:

\(\widehat {OAE} = \widehat {OBF} = 90^\circ \)

\(OA = OB\) (giả thiết)

\(\widehat {AOB}\) là góc chung

Do đó, \(\Delta OAE = \Delta OBF\) (cgv – gn)

Suy ra \(OE = OF\) (hai cạnh tương ứng)

b) Áp dụng bất đẳng thức tam giác cho \(\Delta EIF\), ta được: \(EF < EI + IF\).

Mà \(2EM = EF\) (do \(M\) là trung điểm của \(EF\))

Suy ra \(2EM < EI + IF.\)

Vậy \(EM < \frac{{EI + IF}}{2}.\)

c) Xét \(\Delta EOF\) có hai đường cao \(FB\) và \(AE\) cắt nhau tại \(I\).

Suy ra \(I\) là trực tâm của \(\Delta OEF.\)

Do đó, \(OI \bot EF\) (1)

Xét \(\Delta OEM\) và \(\Delta OFM\), có:

\(OM\) là cạnh chung

\(ME = MF\) (do \(M\) là trung điểm của \(EF\))

\(OE = OF\) (câu a)

Do đó, \(\Delta OEM = \Delta OFM\) (c.c.c)

Suy ra \(\widehat {OME} = \widehat {OMF}\) (hai góc tương ứng)

Mà \(\widehat {OME} + \widehat {OMF} = 180^\circ \) (hai góc kề bù)

Do đó, \(\widehat {OME} = \widehat {OMF} = 90^\circ \) hay \(OM \bot EF\) (2)

Từ (1) và (2) suy ra \(O,I,M\) thẳng hàng.

Lời giải

1.1.

a) \(\frac{x}{{ - 6}} = \frac{3}{4}\)

\(4x = 3.\left( { - 6} \right)\)

\(4x =  - 18\)

\(x = \frac{{ - 18}}{4}\)

\(x = \frac{{ - 9}}{2}\).

Vậy \(x = \frac{{ - 9}}{2}\).

b) \(\frac{{2x + 1}}{6} = \frac{{3 - x}}{9}\)

\(9\left( {2x + 1} \right) = 6\left( {3 - x} \right)\\(18x + 6x = 18 - 9\))

\(18x + 9 = 18 - 6x\)

 

\(24x = 9\)

\(x = \frac{3}{8}\).

Vậy \(x = \frac{3}{8}\).

1.2. Gọi \[a\], \(b\), \(c\) (quyển vở) lần lượt là số quyển vở lớp \(7A\), \(7B\), \(7C\) quyên góp được.

Theo đề, ta có tổng số quyển vở lớp \(7A\) và \(7B\) quyên góp được nhiều hơn lớp \(7C\) là 62 quyển, suy ra \(a + b - c = 62\).

Do số quyển vở mỗi lớp quyên góp được tỉ lệ thuận với số học sinh của lớp đó nên: \(\frac{a}{{32}} = \frac{b}{{35}} = \frac{c}{{36}}\).

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được: \(\frac{a}{{32}} = \frac{b}{{35}} = \frac{c}{{36}} = \frac{{a + b - c}}{{32 + 35 - 36}} = \frac{{62}}{{31}} = 2\).

Suy ra \(a = 32.2 = 64\); \(b = 35.2 = 70\); \(c = 36.2 = 72\).

Vậy số quyển vở lớp \(7A\), \(7B\), \(7C\) quyên góp được lần lượt là 64 quyển vở; 70 quyển vở và 72 quyển vở.