Câu hỏi:

30/06/2025 28 Lưu

2.1. Tính giá trị của biểu thức \(A = \frac{{x - 2y - z}}{2}\) với \(x = - 1;y = 1;z = - 1\).

2.2. Cho đa thức \(A\left( x \right) = \frac{3}{4}{x^3} - 1 + \frac{3}{5}x + 4{x^2} + \frac{5}{4}{x^3} - \frac{8}{5}x + 4 + 7{x^2}\).

     a) Thu gọn và sắp xếp đa thức \(A\left( x \right)\) theo lũy thừa giảm dần của biến.

     b) Tính giá trị của \(A\left( x \right)\) tại \(x = - 1\).

     c) Tìm đa thức \(C\left( x \right)\) sao cho \(B\left( x \right) - C\left( x \right) = A\left( x \right)\), biết \(B\left( x \right) = 2{x^3} + 12{x^2} - 3x + 3\). Tìm nghiệm của đa thức \(C\left( x \right)\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

2.1. Thay \(x =  - 1;y = 1;z =  - 1\) vào biểu thức \(A = \frac{{x - 2y - z}}{2}\), ta được:

\(A = \frac{{ - 1 - 2.1 - \left( { - 1} \right)}}{2} = \frac{{ - 1 - 2 + 1}}{2} =  - 1\).

Vậy giá trị của biểu thức \(A =  - 1\).

2.2. a) \(A\left( x \right) = \frac{3}{4}{x^3} - 1 + \frac{3}{5}x + 4{x^2} + \frac{5}{4}{x^3} - \frac{8}{5}x + 4 + 7{x^2}\)

             \( = \left( {\frac{3}{4} + \frac{5}{4}} \right){x^3} + \left( {4 + 7} \right){x^2} + \left( {\frac{3}{5} - \frac{8}{5}} \right)x - 1 + 4\)

             \( = 2{x^3} + 11{x^2} - x + 3\).

b) Thay \(x =  - 1\) vào \(A\left( x \right)\), ta được: \(A\left( { - 1} \right) = 2.{\left( { - 1} \right)^3} + 11.{\left( { - 1} \right)^2} - \left( { - 1} \right) + 3 =  - 2 + 11 + 1 + 3 = 13\).

Vậy giá trị của \(A = 13\) khi \(x =  - 1\).

c) Ta có \(B\left( x \right) - C\left( x \right) = A\left( x \right)\).

Suy ra \(C\left( x \right) = B\left( x \right) - A\left( x \right)\)

                    \( = 2{x^3} + 12{x^2} - 3x + 3 - \left( {2{x^3} + 11{x^2} - x + 3} \right)\)

                    \( = 2{x^3} + 12{x^2} - 3x + 3 - 2{x^3} - 11{x^2} + x - 3\)

                    \( = {x^2} - 2x\).

Để tìm nghiệm của đa thức \(C\left( x \right)\), ta cho \(C\left( x \right) = 0\)

Do đó \({x^2} - 2x = 0\) hay \(x\left( {x - 2} \right) = 0\)

Suy ra \(x = 0\) hoặc \(x = 2\).

Vậy nghiệm của đa thức \(C\left( x \right)\) là \(x \in \left\{ {0;2} \right\}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Thể tích khoảng không bên trong lều là: \(\frac{1}{2}.1,5.4.5 = 15{\rm{ }}\left( {{{\rm{m}}^3}} \right)\).

b) Diện tích bạt cần để dựng lều là tổng diện tích hai mặt bên và hai mặt đáy của hình lăng trụ đứng tam giác.

Do đó, diện tích bạt cần dùng để dựng lều là: \(2.2,5.5 + 2.\frac{1}{2}.1,5.4 = 31{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).

Lời giải

Cho \(\widehat {xOy}\) là góc nhọn. Trên tia \(Ox\) lấy điểm \(A\) (\(A \ne O\)). Trên tia \(Oy\) lấy điểm \(B\) sao cho \(OA = OB\). Từ \(A\) kẻ đường thẳng vuông góc với \(OA\), cắt \(Oy\) tại \(E\). Từ \(B\) kẻ đường thẳng vuông góc với \(OB\), cắt \(Ox\) tại \(F\). 	a) Chứng minh \(\Delta OAE = \Delta OBF\), từ đó suy ra \(OE = OF\). 	b) Gọi \(I\) là giao điểm của \(AE\) và \(BF\). Gọi \(M\) là trung điểm của \(EF\). So sánh \(EM\) và \(\frac{{EI + IF}}{2}.\) 	c) Chứng minh ba điểm \(O\), \(I\), \(M\) thẳng hàng. (ảnh 1)

a) Xét \(\Delta OAE\) và \(\Delta OBF\), có:

\(\widehat {OAE} = \widehat {OBF} = 90^\circ \)

\(OA = OB\) (giả thiết)

\(\widehat {AOB}\) là góc chung

Do đó, \(\Delta OAE = \Delta OBF\) (cgv – gn)

Suy ra \(OE = OF\) (hai cạnh tương ứng)

b) Áp dụng bất đẳng thức tam giác cho \(\Delta EIF\), ta được: \(EF < EI + IF\).

Mà \(2EM = EF\) (do \(M\) là trung điểm của \(EF\))

Suy ra \(2EM < EI + IF.\)

Vậy \(EM < \frac{{EI + IF}}{2}.\)

c) Xét \(\Delta EOF\) có hai đường cao \(FB\) và \(AE\) cắt nhau tại \(I\).

Suy ra \(I\) là trực tâm của \(\Delta OEF.\)

Do đó, \(OI \bot EF\) (1)

Xét \(\Delta OEM\) và \(\Delta OFM\), có:

\(OM\) là cạnh chung

\(ME = MF\) (do \(M\) là trung điểm của \(EF\))

\(OE = OF\) (câu a)

Do đó, \(\Delta OEM = \Delta OFM\) (c.c.c)

Suy ra \(\widehat {OME} = \widehat {OMF}\) (hai góc tương ứng)

Mà \(\widehat {OME} + \widehat {OMF} = 180^\circ \) (hai góc kề bù)

Do đó, \(\widehat {OME} = \widehat {OMF} = 90^\circ \) hay \(OM \bot EF\) (2)

Từ (1) và (2) suy ra \(O,I,M\) thẳng hàng.