Câu hỏi:
30/06/2025 17
Một công ty may có \(104\) công nhân được chia làm ba tổ. Nếu tổ I bớt đi 1 công nhân, tổ II bớt đi 2 công nhân, tổ III thêm vào 3 công nhân thì số công nhân trong các tổ I, II, III lần lượt tỉ lệ nghịch với \(3;4;2\). Tính số công nhân của mỗi tổ.
Một công ty may có \(104\) công nhân được chia làm ba tổ. Nếu tổ I bớt đi 1 công nhân, tổ II bớt đi 2 công nhân, tổ III thêm vào 3 công nhân thì số công nhân trong các tổ I, II, III lần lượt tỉ lệ nghịch với \(3;4;2\). Tính số công nhân của mỗi tổ.
Quảng cáo
Trả lời:
Gọi số công nhân của ba đội I, II, III lần lượt là \(x;y;z\) \(\left( {x;y;z \in {\mathbb{N}^*}} \right)\), đơn vị: công nhân.
Theo đề bài, sau khi bớt đi 1 công nhân thì đội I còn lại \(x - 1\) (công nhân)
sau khi bớt đi 2 công nhân thì đội II còn lại \(y - 2\) (công nhân)
sau khi thêm 3 công nhân thì đội III có \(z + 3\) (công nhân)
Mà, lúc này số công nhân đội I, II, III lần lượt tỉ lệ nghịch với \(3;4;2\).
Do đó, ta có: \(3\left( {x - 1} \right) = 4\left( {y - 2} \right) = 2\left( {z + 3} \right)\) hay \(\frac{{x - 1}}{{\frac{1}{3}}} = \frac{{y - 2}}{{\frac{1}{4}}} = \frac{{z + 3}}{{\frac{1}{2}}}\).
Lại có \(x + y + z = 104\) (công nhân)
Từ đây, áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{{x - 1}}{{\frac{1}{3}}} = \frac{{y - 2}}{{\frac{1}{4}}} = \frac{{z + 3}}{{\frac{1}{2}}} = \frac{{x - 1 + y - 2 + z + 3}}{{\frac{1}{3} + \frac{1}{4} + \frac{1}{2}}} = \frac{{x + y + z}}{{\frac{{13}}{{12}}}} = \frac{{104}}{{\frac{{13}}{{12}}}} = 96\)
Suy ra \(\frac{{x - 1}}{{\frac{1}{3}}} = 96\) nên \(x = 33\); \(\frac{{y - 2}}{{\frac{1}{4}}} = 96\) nên \(y = 26\); \(\frac{{z + 3}}{{\frac{1}{2}}} = 96\) nên \(z = 45\).
Vậy, số công nhân của các đội I, II, III lần lượt là 33 công nhân, 26 công nhân và 45 công nhân.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Văn, Sử, Địa, GDCD lớp 7 (chương trình mới) ( 60.000₫ )
- Trọng tâm Toán, Anh, KHTN lớp 7 (chương trình mới) ( 60.000₫ )
- Trọng tâm Văn - Sử - Địa - GDCD và Toán - Anh - KHTN lớp 7 (chương trình mới) ( 120.000₫ )
- Trọng tâm Toán - Văn - Anh, Toán - Anh - KHTN lớp 6 (chương trình mới) ( 126.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Xét \(\Delta OAE\) và \(\Delta OBF\), có:
\(\widehat {OAE} = \widehat {OBF} = 90^\circ \)
\(OA = OB\) (giả thiết)
\(\widehat {AOB}\) là góc chung
Do đó, \(\Delta OAE = \Delta OBF\) (cgv – gn)
Suy ra \(OE = OF\) (hai cạnh tương ứng)
b) Áp dụng bất đẳng thức tam giác cho \(\Delta EIF\), ta được: \(EF < EI + IF\).
Mà \(2EM = EF\) (do \(M\) là trung điểm của \(EF\))
Suy ra \(2EM < EI + IF.\)
Vậy \(EM < \frac{{EI + IF}}{2}.\)
c) Xét \(\Delta EOF\) có hai đường cao \(FB\) và \(AE\) cắt nhau tại \(I\).
Suy ra \(I\) là trực tâm của \(\Delta OEF.\)
Do đó, \(OI \bot EF\) (1)
Xét \(\Delta OEM\) và \(\Delta OFM\), có:
\(OM\) là cạnh chung
\(ME = MF\) (do \(M\) là trung điểm của \(EF\))
\(OE = OF\) (câu a)
Do đó, \(\Delta OEM = \Delta OFM\) (c.c.c)
Suy ra \(\widehat {OME} = \widehat {OMF}\) (hai góc tương ứng)
Mà \(\widehat {OME} + \widehat {OMF} = 180^\circ \) (hai góc kề bù)
Do đó, \(\widehat {OME} = \widehat {OMF} = 90^\circ \) hay \(OM \bot EF\) (2)
Từ (1) và (2) suy ra \(O,I,M\) thẳng hàng.
Lời giải
a) Thể tích khoảng không bên trong lều là: \(\frac{1}{2}.1,5.4.5 = 15{\rm{ }}\left( {{{\rm{m}}^3}} \right)\).
b) Diện tích bạt cần để dựng lều là tổng diện tích hai mặt bên và hai mặt đáy của hình lăng trụ đứng tam giác.
Do đó, diện tích bạt cần dùng để dựng lều là: \(2.2,5.5 + 2.\frac{1}{2}.1,5.4 = 31{\rm{ }}\left( {{{\rm{m}}^2}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.