Câu hỏi:
30/06/2025 9
2.1. Tính giá trị của biểu thức \(B = 3{x^2}y + 6{x^2}{y^2} + 3x{y^2}\) tại \(x = - 1,y = 3.\)
2.2. Cho hai đa thức: \(A\left( x \right) = - {x^4} - {x^3} + 2{x^2} + 2{x^3} - x - 3\);
\(B\left( x \right) = {x^4} + 2{x^3} - 2x + 12 + 3{x^2} - {x^3} - {x^4}\).
a) Thu gọn và sắp xếp theo luỹ thừa giảm dần của biến của hai đa thức trên.
b) Xác định bậc và hệ số tự do của đa thức \(B\left( x \right)\).
c) Tính \(M\left( x \right) = A\left( x \right) - B\left( x \right)\).
Tìm nghiệm của đa thức \(N\left( x \right)\) biết: \(N\left( x \right) - \left( {{x^4} + 15} \right) = A\left( x \right) - B\left( x \right)\).
2.1. Tính giá trị của biểu thức \(B = 3{x^2}y + 6{x^2}{y^2} + 3x{y^2}\) tại \(x = - 1,y = 3.\)
2.2. Cho hai đa thức: \(A\left( x \right) = - {x^4} - {x^3} + 2{x^2} + 2{x^3} - x - 3\);
\(B\left( x \right) = {x^4} + 2{x^3} - 2x + 12 + 3{x^2} - {x^3} - {x^4}\).
a) Thu gọn và sắp xếp theo luỹ thừa giảm dần của biến của hai đa thức trên.
b) Xác định bậc và hệ số tự do của đa thức \(B\left( x \right)\).
c) Tính \(M\left( x \right) = A\left( x \right) - B\left( x \right)\).
Tìm nghiệm của đa thức \(N\left( x \right)\) biết: \(N\left( x \right) - \left( {{x^4} + 15} \right) = A\left( x \right) - B\left( x \right)\).
Quảng cáo
Trả lời:
2.1. Thay \(x = - 1,y = 3\) vào biểu thức \(B = 3{x^2}y + 6{x^2}{y^2} + 3x{y^2}\), ta được:
\(B = 3.{\left( { - 1} \right)^2}.3 + 6{\left( { - 1} \right)^2}{.3^2} + 3.\left( { - 1} \right){.3^2} = 36\).
Vậy giá trị của biểu thức \(B = 36\).
2.2. a) \(A\left( x \right) = - {x^4} - {x^3} + 2{x^2} + 2{x^3} - x - 3\)
\( = - {x^4} + \left( { - {x^3} + 2{x^3}} \right) + 2{x^2} - x - 3\)
\( = - {x^4} + {x^3} + 2{x^2} - x - 3\)
\(B\left( x \right) = {x^4} + 2{x^3} - 2x + 12 + 3{x^2} - {x^3} - {x^4}\)
\( = \left( {{x^4} - {x^4}} \right) + \left( {2{x^3} - {x^3}} \right) + 3{x^2} - 2x + 12\)
\( = {x^3} + 3{x^2} - 2x + 12\)
b) Đa thức \(B\left( x \right)\) có bậc là 3 và hệ số tự do là 12.
c) Ta có \(M\left( x \right) = A\left( x \right) - B\left( x \right)\)
Suy ra \[M\left( x \right) = \left( { - {x^4} + {x^3} + 2{x^2} - x - 3} \right) - \left( {{x^3} + 3{x^2} - 2x + 12} \right)\]
\[M\left( x \right) = - {x^4} + {x^3} + 2{x^2} - x - 3 - {x^3} - 3{x^2} + 2x - 12\]
\[ = - {x^4} + \left( {{x^3} - {x^3}} \right) + \left( {2{x^2} - 3{x^2}} \right) + \left( { - x + 2x} \right) + \left( { - 3 - 12} \right)\]
\( = - {x^4} - {x^2} + x - 15\)
Ta có \(N\left( x \right) - \left( {{x^4} + 15} \right) = A\left( x \right) - B\left( x \right)\)
Suy ra \(N\left( x \right) = M\left( x \right) + \left( {{x^4} + 15} \right)\)
Do đó \(N\left( x \right) = - {x^4} - {x^2} + x - 15 + {x^4} + 15\)\( = - {x^2} + x\).
Để tìm nghiệm của đa thức \(N\left( x \right)\), ta cho \(N\left( x \right) = 0\)
Tức là \( - {x^2} + x = 0\)
\( - x\left( {x - 1} \right) = 0\)
Suy ra \(x = 0\) hoặc \(x = 1\).
Vậy nghiệm của đa thức \(N\left( x \right)\) là \(x \in \left\{ {0;1} \right\}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chia bể bơi thành hai khối hộp hình hộp chữa nhật và hình lăng trụ đứng có đáy là hình thang như sau:

a) Thể tích phần bể bơi hình hộp chữ nhật là: \(10.25.1,2 = 300\) (m3).
Thể tích phần bể bơi hình lăng trụ đứng hình thang là: \(\frac{{\left( {8 + 15} \right).1,3}}{2}.10 = 149,5\) (m3)
Thể tích của bể bơi là: \(300 + 149,5 = 449,5\) (m3).
b) Đổi \(500l = 500{\rm{ d}}{{\rm{m}}^3} = 0,5{\rm{ }}{{\rm{m}}^3}\).
Thời gian bơm đầy bể là: \(449,5:0,5 = 889\) phút = 14 giờ 59 phút.
Lời giải
Gọi số tiền thưởng của Tài, Trí, Đức lần lượt là \(x,y,z\) (\(x,y,z > 0,\) đồng).
Theo bài ra ta có: \(\frac{x}{5} = \frac{y}{3}\) và \(z = 25\% \left( {x + y} \right)\) suy ra \(x + y = 4z\).
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \(\frac{x}{5} = \frac{y}{3} = \frac{{x + y}}{8} = \frac{{4z}}{8} = \frac{z}{2}\).
Suy ra \(\frac{x}{5} = \frac{y}{3} = \frac{z}{2}\).
Mà, theo đề \(x + y + z = 100{\rm{ }}000\).
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \(\frac{x}{5} = \frac{y}{3} = \frac{z}{2} = \frac{{x + y + z}}{{5 + 3 + 2}} = \frac{{100{\rm{ }}000}}{{10}} = 10{\rm{ }}000\).
Suy ra \(x = 50{\rm{ }}000;{\rm{ }}y = 30{\rm{ }}000;{\rm{ }}z = 20{\rm{ }}000\).
Vậy số tiền thưởng của ba bạn Tài, Trí, Đức lần lượt là \(50{\rm{ }}000\) đồng, \(30{\rm{ }}000\) đồng và \(20{\rm{ }}000\) đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.