Trong kì thi học sinh giỏi của trường, ba bạn Tài, Trí và Đức được cô giáo thưởng \(100{\rm{ }}000\) đồng. Số tiền thưởng được phân chia theo tỉ lệ số điểm mà mỗi bạn đạt được, biết số điểm của Tài bằng \(\frac{5}{3}\) so với số điểm của Trí, số điểm của Đức bằng \(25\% \) tổng số điểm của hai bạn còn lại. Tính số tiền mà mỗi bạn được thưởng.
Quảng cáo
Trả lời:
Gọi số tiền thưởng của Tài, Trí, Đức lần lượt là \(x,y,z\) (\(x,y,z > 0,\) đồng).
Theo bài ra ta có: \(\frac{x}{5} = \frac{y}{3}\) và \(z = 25\% \left( {x + y} \right)\) suy ra \(x + y = 4z\).
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \(\frac{x}{5} = \frac{y}{3} = \frac{{x + y}}{8} = \frac{{4z}}{8} = \frac{z}{2}\).
Suy ra \(\frac{x}{5} = \frac{y}{3} = \frac{z}{2}\).
Mà, theo đề \(x + y + z = 100{\rm{ }}000\).
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \(\frac{x}{5} = \frac{y}{3} = \frac{z}{2} = \frac{{x + y + z}}{{5 + 3 + 2}} = \frac{{100{\rm{ }}000}}{{10}} = 10{\rm{ }}000\).
Suy ra \(x = 50{\rm{ }}000;{\rm{ }}y = 30{\rm{ }}000;{\rm{ }}z = 20{\rm{ }}000\).
Vậy số tiền thưởng của ba bạn Tài, Trí, Đức lần lượt là \(50{\rm{ }}000\) đồng, \(30{\rm{ }}000\) đồng và \(20{\rm{ }}000\) đồng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chia bể bơi thành hai khối hộp hình hộp chữa nhật và hình lăng trụ đứng có đáy là hình thang như sau:

a) Thể tích phần bể bơi hình hộp chữ nhật là: \(10.25.1,2 = 300\) (m3).
Thể tích phần bể bơi hình lăng trụ đứng hình thang là: \(\frac{{\left( {8 + 15} \right).1,3}}{2}.10 = 149,5\) (m3)
Thể tích của bể bơi là: \(300 + 149,5 = 449,5\) (m3).
b) Đổi \(500l = 500{\rm{ d}}{{\rm{m}}^3} = 0,5{\rm{ }}{{\rm{m}}^3}\).
Thời gian bơm đầy bể là: \(449,5:0,5 = 889\) phút = 14 giờ 59 phút.
Lời giải
![Cho tam giác \[ABC\] vuông tại \(A\) có \(\widehat B = 60^\circ \), đường cao \(AH\). Trên tia đối của tia \(HB\) lấy điểm \(M\) sao cho \(HM = HB\). a) Chứng minh rằng \(HB < HC\). b) Chứng minh rằng \(\Delta AHB = \Delta AHM\). Từ đó suy ra \(\Delta ABM\) là tam giác đều. c) Gọi \(N\) là trung điểm của \(AC\) và \(O\) là giao điểm của \(AM\) và \(BN\). Biết \(AB = 6\,\,{\rm{cm}}{\rm{,}}\) tính độ dài đoạn thẳng \(AO\). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/06/blobid4-1751272911.png)
a) Xét \(\Delta ABC\) vuông tại \(A\) có \(\widehat B = 60^\circ \)
Suy ra \(\widehat C = 90^\circ - \widehat B = 30^\circ \).
Do đó \(\widehat C < \widehat B\) nên \(AB < AC\) nên \(M\) nằm giữa \(H\) và \(C\)
Hay \(HM < HC\)
Mà \(HM = HB\), suy ra \(HB < HC\).
b) Xét \(\Delta AHB\) và \(\Delta AHM\) có:
\(\widehat {AHB} = \widehat {AHM} = 90^\circ \);
\(AH\) là cạnh chung;
\(HM = HB\) (giả thiết).
Do đó \(\Delta AHB = \Delta AHM\) (hai cạnh góc vuông)
Suy ra \(AB = AM\) (hai cạnh tương ứng)
\(\Delta ABM\) có \(AB = AM\) nên là tam giác cân tại \(A\).
Lại có \(\widehat B = 60^\circ \) (giả thiết) nên \(\Delta ABM\) là tam giác đều.
c) Do \(\Delta ABM\) là tam giác đều nên \(\widehat {MAB} = 60^\circ \).
Suy ra \(\widehat {MAC} = 90^\circ - \widehat {MAB} = 90^\circ - 60^\circ = 30^\circ \)
Tam giác \(MAC\) có \(\widehat {MAC} = \widehat {MCA} = 30^\circ \) nên là tam giác cân tại \(M\).
Suy ra \(MA = MC\).
Lại có \(MA = MB\) (do \(\Delta ABM\) đều)
Do đó \(MB = MC\) hay \(M\) là trung điểm của \(BC\).
Xét \(\Delta ABC\) có \(AM,BN\) là hai đường trung tuyến của tam giác cắt nhau tại \(O\) nên \(O\) là trọng tâm của tam giác.
Suy ra \(AO = \frac{2}{3}AM = \frac{2}{3}AB = \frac{2}{3}.6 = 4\,\,\left( {{\rm{cm}}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.