Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 11
4 người thi tuần này 5.0 16.8 K lượt thi 6 câu hỏi 45 phút
🔥 Đề thi HOT:
Bộ 12 Đề thi học kì 2 Toán 7 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
15 câu Trắc nghiệm Toán 7 Cánh diều Bài 1: Tập hợp Q các số hữu tỉ có đáp án
15 câu Trắc nghiệm Toán 7 Chân trời sáng tạo Bài 1: Tập hợp các số hữu tỉ có đáp án
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 2
Bộ 10 đề thi giữa kì 1 Toán 7 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
Bộ 12 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 04
5 câu Trắc nghiệm Tập hợp các số hữu tỉ có đáp án (Nhận biết)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
1.1.
a) \[\frac{{ - 6}}{x} = \frac{9}{{ - 15}}\] \[9x = - 6.\left( { - 15} \right)\] \[9x = 90\] \[x = 10\] Vậy \[x = 10\], |
b) \[\frac{{2x + 3}}{{24}} = \frac{{3x - 1}}{{32}}\] \[32.\left( {2x + 3} \right) = 24.\left( {3x - 1} \right)\] \[64x + 96 = 72x - 24\] \[72x - 64x = 96 + 24\] \[8x = 120\] \[x = 15\] Vậy \[x = 15\]. |
1.2. Gọi số người của đội một, đội hai, đội ba lần lượt là \(x,y,z\) (công nhân) với \(x,y,z \in {\mathbb{N}^*}\).
Đội thứ ba nhiều hơn đội thứ hai là 20 người nên ta có: \(z - y = 20\).
Vì khối lượng công việc như nhau, số công nhân và số ngày tỉ lệ nghịch với nhau nên:
\(5x = 6y = 4z\) hay \(\frac{x}{{12}} = \frac{y}{{10}} = \frac{z}{{15}}\).
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{{12}} = \frac{y}{{10}} = \frac{z}{{15}} = \frac{{z - y}}{{15 - 10}} = \frac{{20}}{5} = 4\).
Do đó, \(x = 4.12 = 48;{\rm{ }}y = 10.4 = 40;{\rm{ }}z = 15.4 = 60\).
Vậy số người của ba đội lần lượt là 48; 40; 60 người.
Lời giải
2.1. Thay \(x = - 1,y = 3\) vào biểu thức \(B = 3{x^2}y + 6{x^2}{y^2} + 3x{y^2}\), ta được:
\(B = 3.{\left( { - 1} \right)^2}.3 + 6{\left( { - 1} \right)^2}{.3^2} + 3.\left( { - 1} \right){.3^2} = 36\).
Vậy giá trị của biểu thức \(B = 36\).
2.2. a) \(A\left( x \right) = - {x^4} - {x^3} + 2{x^2} + 2{x^3} - x - 3\)
\( = - {x^4} + \left( { - {x^3} + 2{x^3}} \right) + 2{x^2} - x - 3\)
\( = - {x^4} + {x^3} + 2{x^2} - x - 3\)
\(B\left( x \right) = {x^4} + 2{x^3} - 2x + 12 + 3{x^2} - {x^3} - {x^4}\)
\( = \left( {{x^4} - {x^4}} \right) + \left( {2{x^3} - {x^3}} \right) + 3{x^2} - 2x + 12\)
\( = {x^3} + 3{x^2} - 2x + 12\)
b) Đa thức \(B\left( x \right)\) có bậc là 3 và hệ số tự do là 12.
c) Ta có \(M\left( x \right) = A\left( x \right) - B\left( x \right)\)
Suy ra \[M\left( x \right) = \left( { - {x^4} + {x^3} + 2{x^2} - x - 3} \right) - \left( {{x^3} + 3{x^2} - 2x + 12} \right)\]
\[M\left( x \right) = - {x^4} + {x^3} + 2{x^2} - x - 3 - {x^3} - 3{x^2} + 2x - 12\]
\[ = - {x^4} + \left( {{x^3} - {x^3}} \right) + \left( {2{x^2} - 3{x^2}} \right) + \left( { - x + 2x} \right) + \left( { - 3 - 12} \right)\]
\( = - {x^4} - {x^2} + x - 15\)
Ta có \(N\left( x \right) - \left( {{x^4} + 15} \right) = A\left( x \right) - B\left( x \right)\)
Suy ra \(N\left( x \right) = M\left( x \right) + \left( {{x^4} + 15} \right)\)
Do đó \(N\left( x \right) = - {x^4} - {x^2} + x - 15 + {x^4} + 15\)\( = - {x^2} + x\).
Để tìm nghiệm của đa thức \(N\left( x \right)\), ta cho \(N\left( x \right) = 0\)
Tức là \( - {x^2} + x = 0\)
\( - x\left( {x - 1} \right) = 0\)
Suy ra \(x = 0\) hoặc \(x = 1\).
Vậy nghiệm của đa thức \(N\left( x \right)\) là \(x \in \left\{ {0;1} \right\}\).
Lời giải
a) Tập hợp các kết quả có thể xảy ra đối với số xuất hiện trên quả bóng được rút ra là:
\(M = \left\{ {1;2;3;4;5;6;7} \right\}\).
Do đó, có \(7\) kết quả có thể xảy ra.
b) Kết quả thuận lợi của biến cố: “Rút được thẻ ghi số là số chẵn” là: \(2;4;6\).
Xác suất của biến cố \(A\) là \(\frac{3}{7}\).
c) Kết quả thuận lợi của biến cố: “Rút được thẻ ghi số là số chia 5 dư 2” là \(2;7\).
Xác suất của biến cố \(B\) là \(\frac{2}{7}\).Lời giải
Chia bể bơi thành hai khối hộp hình hộp chữa nhật và hình lăng trụ đứng có đáy là hình thang như sau:

a) Thể tích phần bể bơi hình hộp chữ nhật là: \(10.25.1,2 = 300\) (m3).
Thể tích phần bể bơi hình lăng trụ đứng hình thang là: \(\frac{{\left( {8 + 15} \right).1,3}}{2}.10 = 149,5\) (m3)
Thể tích của bể bơi là: \(300 + 149,5 = 449,5\) (m3).
b) Đổi \(500l = 500{\rm{ d}}{{\rm{m}}^3} = 0,5{\rm{ }}{{\rm{m}}^3}\).
Thời gian bơm đầy bể là: \(449,5:0,5 = 889\) phút = 14 giờ 59 phút.
Lời giải
![Cho tam giác \[ABC\] vuông tại \(A\) có \(\widehat B = 60^\circ \), đường cao \(AH\). Trên tia đối của tia \(HB\) lấy điểm \(M\) sao cho \(HM = HB\). a) Chứng minh rằng \(HB < HC\). b) Chứng minh rằng \(\Delta AHB = \Delta AHM\). Từ đó suy ra \(\Delta ABM\) là tam giác đều. c) Gọi \(N\) là trung điểm của \(AC\) và \(O\) là giao điểm của \(AM\) và \(BN\). Biết \(AB = 6\,\,{\rm{cm}}{\rm{,}}\) tính độ dài đoạn thẳng \(AO\). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/06/blobid4-1751272911.png)
a) Xét \(\Delta ABC\) vuông tại \(A\) có \(\widehat B = 60^\circ \)
Suy ra \(\widehat C = 90^\circ - \widehat B = 30^\circ \).
Do đó \(\widehat C < \widehat B\) nên \(AB < AC\) nên \(M\) nằm giữa \(H\) và \(C\)
Hay \(HM < HC\)
Mà \(HM = HB\), suy ra \(HB < HC\).
b) Xét \(\Delta AHB\) và \(\Delta AHM\) có:
\(\widehat {AHB} = \widehat {AHM} = 90^\circ \);
\(AH\) là cạnh chung;
\(HM = HB\) (giả thiết).
Do đó \(\Delta AHB = \Delta AHM\) (hai cạnh góc vuông)
Suy ra \(AB = AM\) (hai cạnh tương ứng)
\(\Delta ABM\) có \(AB = AM\) nên là tam giác cân tại \(A\).
Lại có \(\widehat B = 60^\circ \) (giả thiết) nên \(\Delta ABM\) là tam giác đều.
c) Do \(\Delta ABM\) là tam giác đều nên \(\widehat {MAB} = 60^\circ \).
Suy ra \(\widehat {MAC} = 90^\circ - \widehat {MAB} = 90^\circ - 60^\circ = 30^\circ \)
Tam giác \(MAC\) có \(\widehat {MAC} = \widehat {MCA} = 30^\circ \) nên là tam giác cân tại \(M\).
Suy ra \(MA = MC\).
Lại có \(MA = MB\) (do \(\Delta ABM\) đều)
Do đó \(MB = MC\) hay \(M\) là trung điểm của \(BC\).
Xét \(\Delta ABC\) có \(AM,BN\) là hai đường trung tuyến của tam giác cắt nhau tại \(O\) nên \(O\) là trọng tâm của tam giác.
Suy ra \(AO = \frac{2}{3}AM = \frac{2}{3}AB = \frac{2}{3}.6 = 4\,\,\left( {{\rm{cm}}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.