Câu hỏi:

30/06/2025 10

(2,0 điểm)

2.1. Cho biết 3 máy cày cày xong một cánh đồng hết 30 giờ. Hỏi 5 máy cày như thế cày xong cánh đồng đó đến bao nhiêu giờ? (biết rằng các máy cày có cùng năng suất)

2.2. Một cửa hàng có ba cuộn vải với tổng chiều dài là \(186{\rm{ m}}{\rm{.}}\) Giá tiền của mỗi mét vải của ba cuộn là như nhau, sau khi bán được một ngày cửa hàng còn lại \(\frac{2}{3}\) cuộn vải loại \(I,\) \(\frac{1}{3}\) cuộn vải loại \(II\), \(\frac{3}{5}\) cuộn vải loại \(III\). Số tiền bán được của ba cửa hàng tỉ lệ với \(2:3:2\). Tính xem trong ngày đó cửa hàng đã bán được bao nhiêu mét vải của mỗi cuộn vải?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

2.1. Gọi thời gian để 5 máy cày cày xong cánh đồng là \[x\] giờ \[\left( {x > 0} \right)\].

Vì năng suất của mỗi máy cày là như nhau nên để cày cùng một cánh đồng, số máy cày tỉ lệ nghịch với số giờ cày xong cánh đồng.

Theo tính chất của đại lượng tỉ lệ nghịch, ta có: \[\frac{{30}}{x} = \frac{5}{3}\] do đó, \[x = \frac{{3.30}}{5} = 18\].

Vậy 5 máy cày cày xong cánh đồng đó hết 18 giờ.

2.2. Gọi chiều dài của ba cuộn vải loại \(I,\) loại \(II,\) loại \(III\) lần lượt là \(a,b,c{\rm{ }}\left( {\rm{m}} \right)\) với \(\left( {0 < a,b,c < 168} \right)\).

Sau một ngày, cửa hàng bán được số vải của các cuộn là

Cuộn vải loại \(I\) bán được: \(a - \frac{2}{3}a = \frac{1}{3}a{\rm{ }}\left( {\rm{m}} \right)\).

Cuộn vải loại \(II\) bán được: \(b - \frac{1}{3}b = \frac{2}{3}b{\rm{ }}\left( {\rm{m}} \right)\).

Cuộn vải loại \(III\) bán được: \(c - \frac{3}{5}c = \frac{2}{5}c{\rm{ }}\left( {\rm{m}} \right)\).

Do giá tiền \(1{\rm{ m}}\) vải của các cuộn bằng nhau nên số mét vải bán được của các cuộn tỉ lệ với số tiền bán được, mà số tiền bán được của các cuộn tỉ lệ với \(2:3:2\). Do đó, số vải bán được của các cuộn tỉ lệ với \(2:3:2\).

Ta có: \(\frac{{\frac{1}{3}a}}{2} = \frac{{\frac{2}{3}b}}{3} = \frac{{\frac{2}{5}c}}{2}\) suy ra \(\frac{a}{6} = \frac{{2b}}{9} = \frac{{2c}}{{10}}\) suy ra \(\frac{a}{6} = \frac{b}{{4,5}} = \frac{c}{5}\).

Mà tổng chiều dài của ba cuộn vải là \(186{\rm{ m}}\) nên \(a + b + c = 186{\rm{ }}\left( {\rm{m}} \right){\rm{.}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{6} = \frac{b}{{4,5}} = \frac{c}{5} = \frac{{a + b + c}}{{6 + 4,5 + 5}} = \frac{{186}}{{15,5}} = 12\).

Suy ra \(\frac{a}{6} = 12\) nên \(a = 72{\rm{ m}}{\rm{.}}\)

\(\frac{b}{{4,5}} = 12\) nên \(b = 54{\rm{ m}}\).

\(\frac{c}{5} = 12\) nên \(c = 60{\rm{ m}}{\rm{.}}\)

Vậy chiều dài của ba cuộn vải loại \(I,\) loại \(II,\) loại \(III\) lần lượt là \(72{\rm{ m, 54 m, 60 m}}{\rm{.}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) \(\frac{{1,2}}{{x + 3}} = \frac{5}{4}\) nên \(5\left( {x + 3} \right) = 4.1,2\) hay \(5x + 15 = 4,8\), do đó \(5x = 4,8 - 15\) được \(5x = 10,2\).

Suy ra \(x = 2,04\).

Vậy \(x = 2,04\).

b) \(\frac{x}{8} = \frac{y}{{12}}\) và \(x + y = 60\).

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \(\frac{x}{8} = \frac{y}{{12}} = \frac{{x + y}}{{8 + 12}} = \frac{{60}}{{20}} = 3\).

Suy ra \(\frac{x}{8} = 3\) nên \(x = 24\) và \(\frac{y}{{12}} = 3\) nên \(y = 36\).

Vậy \(x = 24\) và \(y = 36\).

c) \(\frac{x}{2} = \frac{y}{3} = \frac{z}{5}\) và \(x + y + z = 30\).

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \(\frac{x}{2} = \frac{y}{3} = \frac{z}{5} = \frac{{x + y + z}}{{2 + 3 + 5}} = \frac{{30}}{{10}} = 3\).

Suy ra \(x = 2.3 = 6;{\rm{ }}y = 3.3 = 9;{\rm{ }}z = 5.3 = 15\).

Vậy \(x = 6;y = 9;z = 15\).

Lời giải

Hướng dẫn giải

4.1.

(1,5 điểm)  4.1. Cho hình vẽ bên, biết   A B = D C  ,   ˆ B A C = ˆ B D C = 90 ∘   và   E D = 4 c m  . Hỏi khoảng cách từ   E   đến đường thẳng   A B   là bao nhiêu centimet?  4.2. Một tam giác cân có một cạnh bằng   6 c m .   Tính hai cạnh còn lại, biết chu vi của tam giác đó bằng   20 c m . (ảnh 1)

Xét

\(\Delta ABE\) có \(\widehat A + \widehat B + \widehat {AEB} = 180^\circ \) (Định lí tổng ba góc trong một tam giác)

Suy ra \(\widehat B = 180^\circ - \widehat A - \widehat {AEB}\) (1)

Xét \(\Delta CED\) có \(\widehat C + \widehat D + \widehat {CED} = 180^\circ \) (Định lí tổng ba góc trong một tam giác)

Suy ra \(\widehat C = 180^\circ - \widehat D - \widehat {CED}\) (2)

Mà \(\widehat {AEB} = \widehat {CED}\) (Hai góc đối đỉnh) (3)

Từ (1), (2) và (3) suy ra \(\widehat B = \widehat C\).

Xét \(\Delta ABE\) và \(\Delta DCE\) có:

\(\widehat {BAC} = \widehat {BDC} = 90^\circ \)

\(AB = CD\)

\(\widehat B = \widehat C\)

Do đó, \(\Delta ABE = \Delta DCE\) (g.c.g)

Suy ra \(AE = DE\) (hai cạnh tương ứng)

Mà \(ED = 4{\rm{ cm}}\) nên \(EA = 4{\rm{ cm}}\).

Khoảng cách từ điểm \(E\) đến đường thẳng \(AB\) là \(EA\) (Vì \(AE \bot AB\) tại \(A\))

Vậy khoảng cách từ điểm \(E\) đến đường thẳng \(AB\) là \(4{\rm{ cm}}{\rm{.}}\)

4.2.

TH1: Nếu cạnh đã cho có độ dài \(6{\rm{ cm}}\)là cạnh đáy thì hai cạnh còn lại là \(\left( {20 - 6} \right):2 = 7{\rm{ }}\left( {{\rm{cm}}} \right){\rm{.}}\)

Thỏa mãn bất đẳng thức tam giác.

TH2: Nếu cạnh đã cho có độ dài \(6{\rm{ cm}}\) là cạnh bên của tam giác cân thì độ dài cạnh đáy là

\(20 - 6.2 = 8{\rm{ }}\left( {{\rm{cm}}} \right){\rm{.}}\)

Thỏa mãn bất đẳng thức tam giác.

Do đó, cạnh còn lại có thể có độ dài bằng \({\rm{7 cm}}\) hoặc \({\rm{8 cm}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP