Bộ 10 đề thi giữa kì 2 Toán 7 Kết nối tri thức cấu trúc mới có đáp án - Đề 6
9 người thi tuần này 4.6 132 lượt thi 6 câu hỏi 60 phút
🔥 Đề thi HOT:
Bộ 12 Đề thi học kì 2 Toán 7 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
15 câu Trắc nghiệm Toán 7 Cánh diều Bài 1: Tập hợp Q các số hữu tỉ có đáp án
15 câu Trắc nghiệm Toán 7 Chân trời sáng tạo Bài 1: Tập hợp các số hữu tỉ có đáp án
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 2
Bộ 10 đề thi giữa kì 1 Toán 7 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
Bộ 12 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 04
5 câu Trắc nghiệm Tập hợp các số hữu tỉ có đáp án (Nhận biết)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải
a) \(\frac{{1,2}}{{x + 3}} = \frac{5}{4}\) nên \(5\left( {x + 3} \right) = 4.1,2\) hay \(5x + 15 = 4,8\), do đó \(5x = 4,8 - 15\) được \(5x = 10,2\).
Suy ra \(x = 2,04\).
Vậy \(x = 2,04\).
b) \(\frac{x}{8} = \frac{y}{{12}}\) và \(x + y = 60\).
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \(\frac{x}{8} = \frac{y}{{12}} = \frac{{x + y}}{{8 + 12}} = \frac{{60}}{{20}} = 3\).
Suy ra \(\frac{x}{8} = 3\) nên \(x = 24\) và \(\frac{y}{{12}} = 3\) nên \(y = 36\).
Vậy \(x = 24\) và \(y = 36\).
c) \(\frac{x}{2} = \frac{y}{3} = \frac{z}{5}\) và \(x + y + z = 30\).
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \(\frac{x}{2} = \frac{y}{3} = \frac{z}{5} = \frac{{x + y + z}}{{2 + 3 + 5}} = \frac{{30}}{{10}} = 3\).
Suy ra \(x = 2.3 = 6;{\rm{ }}y = 3.3 = 9;{\rm{ }}z = 5.3 = 15\).
Vậy \(x = 6;y = 9;z = 15\).
Lời giải
Hướng dẫn giải
2.1. Gọi thời gian để 5 máy cày cày xong cánh đồng là \[x\] giờ \[\left( {x > 0} \right)\].
Vì năng suất của mỗi máy cày là như nhau nên để cày cùng một cánh đồng, số máy cày tỉ lệ nghịch với số giờ cày xong cánh đồng.
Theo tính chất của đại lượng tỉ lệ nghịch, ta có: \[\frac{{30}}{x} = \frac{5}{3}\] do đó, \[x = \frac{{3.30}}{5} = 18\].
Vậy 5 máy cày cày xong cánh đồng đó hết 18 giờ.
2.2. Gọi chiều dài của ba cuộn vải loại \(I,\) loại \(II,\) loại \(III\) lần lượt là \(a,b,c{\rm{ }}\left( {\rm{m}} \right)\) với \(\left( {0 < a,b,c < 168} \right)\).
Sau một ngày, cửa hàng bán được số vải của các cuộn là
Cuộn vải loại \(I\) bán được: \(a - \frac{2}{3}a = \frac{1}{3}a{\rm{ }}\left( {\rm{m}} \right)\).
Cuộn vải loại \(II\) bán được: \(b - \frac{1}{3}b = \frac{2}{3}b{\rm{ }}\left( {\rm{m}} \right)\).
Cuộn vải loại \(III\) bán được: \(c - \frac{3}{5}c = \frac{2}{5}c{\rm{ }}\left( {\rm{m}} \right)\).
Do giá tiền \(1{\rm{ m}}\) vải của các cuộn bằng nhau nên số mét vải bán được của các cuộn tỉ lệ với số tiền bán được, mà số tiền bán được của các cuộn tỉ lệ với \(2:3:2\). Do đó, số vải bán được của các cuộn tỉ lệ với \(2:3:2\).
Ta có: \(\frac{{\frac{1}{3}a}}{2} = \frac{{\frac{2}{3}b}}{3} = \frac{{\frac{2}{5}c}}{2}\) suy ra \(\frac{a}{6} = \frac{{2b}}{9} = \frac{{2c}}{{10}}\) suy ra \(\frac{a}{6} = \frac{b}{{4,5}} = \frac{c}{5}\).
Mà tổng chiều dài của ba cuộn vải là \(186{\rm{ m}}\) nên \(a + b + c = 186{\rm{ }}\left( {\rm{m}} \right){\rm{.}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{6} = \frac{b}{{4,5}} = \frac{c}{5} = \frac{{a + b + c}}{{6 + 4,5 + 5}} = \frac{{186}}{{15,5}} = 12\).
Suy ra \(\frac{a}{6} = 12\) nên \(a = 72{\rm{ m}}{\rm{.}}\)
\(\frac{b}{{4,5}} = 12\) nên \(b = 54{\rm{ m}}\).
\(\frac{c}{5} = 12\) nên \(c = 60{\rm{ m}}{\rm{.}}\)
Vậy chiều dài của ba cuộn vải loại \(I,\) loại \(II,\) loại \(III\) lần lượt là \(72{\rm{ m, 54 m, 60 m}}{\rm{.}}\)
Lời giải
Hướng dẫn giải
3.1. a) Ta có:
\(M\left( x \right) = - 5{x^4} + 3{x^5} + x\left( {{x^2} + 5x} \right) + 14{x^4} - 3{x^5} - {x^3} + {x^2} + 1\)
\(M\left( x \right) = - 5{x^4} + 3{x^5} + {x^3} + 5{x^2} + 14{x^4} - 3{x^5} - {x^3} + {x^2} + 1\)
\(M\left( x \right) = \left( {3{x^5} - 3{x^5}} \right) + \left( {14{x^4} - 5{x^4}} \right) + \left( {{x^3} - {x^3}} \right) + \left( {5{x^2} + {x^2}} \right) + 1\)
\(M\left( x \right) = 9{x^4} + 6{x^2} + 1\).
b) Ta có \(M\left( x \right) = 9{x^4} + 6{x^2} + 1\) có hệ số cao nhất là \(9\); hệ số tự do là \(1\) và bậc là \(4\).
c) Ta có: \(M\left( 2 \right) = {9.2^4} + {6.2^2} + 1 = 169\);
\(M\left( 1 \right) = {9.1^4} + {6.1^2} + 1 = 16\);
\(M\left( { - 1} \right) = 9.{\left( { - 1} \right)^4} + 6.{\left( { - 1} \right)^2} + 1 = 16\).
d) Ta có: \(M\left( x \right) = 9{x^4} + 6{x^2} + 1\) hay \(M\left( x \right) = {\left( {3{x^2} + 1} \right)^2}\).
Nhận thấy \(3{x^2} + 1 > 0\) với mọi \(x\) nên \(M\left( x \right) = {\left( {3{x^2} + 1} \right)^2} > 0\) với mọi \(x\).
3.2. Ta có: \(P\left( x \right) = {x^7} - 80{x^6} + 80{x^5} - 80{x^4} + ... + 80x + 15\)
Nhận thấy \(80 = 79 + 1 = x + 1\).
Do đó, ta có: \(P\left( x \right) = {x^7} - \left( {x + 1} \right){x^6} + \left( {x + 1} \right){x^5} - \left( {x + 1} \right){x^4} + ... + \left( {x + 1} \right)x + 15\)
\(P\left( x \right) = {x^7} - {x^7} - {x^6} + {x^6} + {x^5} - {x^5} - {x^4} + ... + {x^2} + x + 15\)
\(P\left( x \right) = x + 15\)
\(P\left( x \right) = 79 + 15 = 94\).
Vậy \(P\left( x \right) = 94.\)
Lời giải
Hướng dẫn giải
4.1.
Xét
\(\Delta ABE\) có \(\widehat A + \widehat B + \widehat {AEB} = 180^\circ \) (Định lí tổng ba góc trong một tam giác)
Suy ra \(\widehat B = 180^\circ - \widehat A - \widehat {AEB}\) (1)
Xét \(\Delta CED\) có \(\widehat C + \widehat D + \widehat {CED} = 180^\circ \) (Định lí tổng ba góc trong một tam giác)
Suy ra \(\widehat C = 180^\circ - \widehat D - \widehat {CED}\) (2)
Mà \(\widehat {AEB} = \widehat {CED}\) (Hai góc đối đỉnh) (3)
Từ (1), (2) và (3) suy ra \(\widehat B = \widehat C\).
Xét \(\Delta ABE\) và \(\Delta DCE\) có:
\(\widehat {BAC} = \widehat {BDC} = 90^\circ \)
\(AB = CD\)
\(\widehat B = \widehat C\)
Do đó, \(\Delta ABE = \Delta DCE\) (g.c.g)
Suy ra \(AE = DE\) (hai cạnh tương ứng)
Mà \(ED = 4{\rm{ cm}}\) nên \(EA = 4{\rm{ cm}}\).
Khoảng cách từ điểm \(E\) đến đường thẳng \(AB\) là \(EA\) (Vì \(AE \bot AB\) tại \(A\))
Vậy khoảng cách từ điểm \(E\) đến đường thẳng \(AB\) là \(4{\rm{ cm}}{\rm{.}}\)
4.2.
TH1: Nếu cạnh đã cho có độ dài \(6{\rm{ cm}}\)là cạnh đáy thì hai cạnh còn lại là \(\left( {20 - 6} \right):2 = 7{\rm{ }}\left( {{\rm{cm}}} \right){\rm{.}}\)
Thỏa mãn bất đẳng thức tam giác.
TH2: Nếu cạnh đã cho có độ dài \(6{\rm{ cm}}\) là cạnh bên của tam giác cân thì độ dài cạnh đáy là
\(20 - 6.2 = 8{\rm{ }}\left( {{\rm{cm}}} \right){\rm{.}}\)
Thỏa mãn bất đẳng thức tam giác.
Do đó, cạnh còn lại có thể có độ dài bằng \({\rm{7 cm}}\) hoặc \({\rm{8 cm}}\).
Lời giải
Hướng dẫn giải
a) Vì hai trung tuyến \(BD\) và \(CE\) cắt nhau tại \(G\) nên \(G\) là trọng tâm \(\Delta ABC\).
Do đó, \(BG = \frac{2}{3}BD;CG = \frac{2}{3}CE\) (tính chất trọng tâm tam giác)
Mà \(BD = CE\) (giả thiết) nên \(\frac{2}{3}BD = \frac{2}{3}CE\) hay \(BG = CG\).
Suy ra tam giác \(GBC\) là tam giác cân.
b) Ta có: \(BG = \frac{2}{3}BD\) nên \(DG = \frac{1}{3}BD\) do đó \(BG = 2DG\) hay \(DG = \frac{1}{2}BG.\)
Lại có \(CG = \frac{2}{3}CE\) nên \(GE = \frac{1}{3}CE\) do đó \(CG = 2CE\) hay \(CE = \frac{1}{2}CG\).
Mà \(BG = CG\) (cmt) nên \(DG = EG\).
Ta có: \(DG + EG = \frac{1}{2}BG + \frac{1}{2}CG = \frac{1}{2}\left( {BG + CG} \right)\).
Xét tam giác \(GBC\) có \(BG + CG > BG\) (trong một tam giác tổng độ dài hai cạnh lớn hơn độ dài cạnh còn lại).
Vậy \(DG + EG > \frac{1}{2}BC\) (đpcm).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.