Bộ 10 đề thi giữa kì 2 Toán 7 Kết nối tri thức cấu trúc mới có đáp án - Đề 9
8 người thi tuần này 4.6 104 lượt thi 6 câu hỏi 60 phút
🔥 Đề thi HOT:
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
15 câu Trắc nghiệm Toán 7 Cánh diều Bài 1: Tập hợp Q các số hữu tỉ có đáp án
15 câu Trắc nghiệm Toán 7 Chân trời sáng tạo Bài 1: Tập hợp các số hữu tỉ có đáp án
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 04
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 2
5 câu Trắc nghiệm Tập hợp các số hữu tỉ có đáp án (Nhận biết)
Bộ 10 đề thi giữa kì 1 Toán 7 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải
a) \(\frac{x}{{3,2}} = \frac{{2,5}}{{7,2}}\) do đó \(x = \frac{{2,5.3,2}}{{7,2}} = \frac{{10}}{9}\).
Vậy \(x = \frac{{10}}{9}\).
b) \(\frac{x}{3} = \frac{y}{5}\) và \(x + y = - 32\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \(\frac{x}{3} = \frac{y}{5} = \frac{{x + y}}{{3 + 5}} = \frac{{ - 32}}{8} = - 4\).
Do đó, \(x = 3.\left( { - 4} \right) = - 12\) và \(y = 5.\left( { - 4} \right) = - 20\).
Vậy \(x = - 12\) và \(y = - 20\).
c) \(\frac{x}{4} = \frac{y}{3} = \frac{z}{2}\) và \(x + y + z = 27.\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \(\frac{x}{4} = \frac{y}{3} = \frac{z}{2} = \frac{{x + y + z}}{{4 + 3 + 2}} = \frac{{27}}{9} = 3\).
Do đó, \(x = 4.3 = 12;{\rm{ }}y = 3.3 = 9;{\rm{ }}z = 2.3 = 6\).
Vậy \(x = 12;y = 9;z = 6.\)
Lời giải
Hướng dẫn giải
2.1. Gọi giá tiền một gói bạn Huy mua là \(x\) (nghìn đồng)
Vì số tiền mà bạn Tùng và Huy mua đồ là như nhau nên gói bánh, bim bim và giá tiền của nó là hai đại lượng tỉ lệ nghịch.
Do đó, ta có \(12.5 = 6x\) suy ra \(x = \frac{{12.5}}{6} = 10\) (nghìn đồng)
Vậy giá gói bánh bạn Huy mua là 10 nghìn đồng.
2.2. Gọi số sách quyên góp được của ba lớp 7A, 7B, 7C lần lượt là \(x;y;z\) (quyển).
Vì số sách quyên góp được của ba lớp 7A, 7B, 7C lần lượt tỉ lệ với \(16;13;12\) và lớp 7A quyên góp nhiều hơn lớp 7C là 12 quyển nên ta có: \(\frac{x}{{16}} = \frac{y}{{13}} = \frac{z}{{12}}\) và \(x - z = 12\).
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{{16}} = \frac{y}{{13}} = \frac{z}{{12}} = \frac{{x - z}}{{16 - 12}} = \frac{{12}}{4} = 3\)
Suy ra \(\frac{x}{{16}} = 3\) nên \(x = 48\); \(\frac{y}{{13}} = 3\) nên \(y = 39\); \(\frac{z}{{12}} = 3\) nên \(z = 36\).
Vậy số sách quyên góp được của ba lớp 7A, 7B, 7C lần lượt là \(48\) quyển, \(39\) quyển, \(36\) quyển.
Lời giải
Hướng dẫn giải
3.1. a) Ta có: \(Q\left( x \right) = - 3{x^3} + x - {x^4} - 3 + {x^3} + 4x - 2{x^2}\)
\(Q\left( x \right) = \left( { - 3{x^3} + {x^3}} \right) - {x^4} - 3 + \left( {4x + x} \right) - 2{x^2}\)
\(Q\left( x \right) = - {x^4} - 2{x^3} - 2{x^2} + 5x - 3\).
b) Đa thức \(Q\left( x \right)\) có hệ số cao nhất là \( - 1\), hệ số tự do là \( - 3\) và bậc là \(4\).
c) Ta có: \(Q\left( {\frac{1}{2}} \right) = - {\left( {\frac{1}{2}} \right)^4} - 2{\left( {\frac{1}{2}} \right)^3} - 2{\left( {\frac{1}{2}} \right)^2} + 5.\frac{1}{2} - 3\)
\(Q\left( {\frac{1}{2}} \right) = - \frac{1}{{16}} - \frac{1}{4} - \frac{1}{2} + \frac{5}{2} - 3 = \frac{{ - 21}}{{16}}\).
\(Q\left( 1 \right) = - {\left( 1 \right)^4} - {2.1^3} - {2.1^2} + 5.1 - 3 = - 3\).
\(Q\left( { - 1} \right) = - {\left( { - 1} \right)^4} - 2.{\left( { - 1} \right)^3} - 2.{\left( { - 1} \right)^2} + 5.\left( { - 1} \right) - 3 = - 9\).
d) Ta có: \(T\left( x \right) - {x^4} + 2{x^3} - 5x = Q\left( x \right)\) suy ra \(T\left( x \right) = Q\left( x \right) + {x^4} - 2{x^3} + 5x\)
Do đó, \(T\left( x \right) = Q\left( x \right) + {x^4} - 2{x^3} + 5x\)
\(T\left( x \right) = - {x^4} - 2{x^3} - 2{x^2} + 5x - 3 + {x^4} - 2{x^3} + 5x = - 4{x^3} - 2{x^2} + 10x - 3\).
Vậy \(T\left( x \right) = - 4{x^3} - 2{x^2} + 10x - 3\).
3.2. Ta có: \(A = {\left( {x + 2014} \right)^2} + {\left( {y - 2015} \right)^2} + {\left( {z - 2016} \right)^2} + 2017\)
Nhận thấy \({\left( {x + 2014} \right)^2} \ge 0\); \({\left( {y - 2015} \right)^2} \ge 0\); \({\left( {z - 2016} \right)^2} \ge 0\)
Do đó, \({\left( {x + 2014} \right)^2} + {\left( {y - 2015} \right)^2} + {\left( {z - 2016} \right)^2} + 2017 \ge 2017\) khi đồng thời \(x + 2014 = 0\); \(y - 2015 = 0\); \(z - 2016 = 0\).
Suy ra \(x = - 2014;y = 2015;z = 2016\).
Vậy giá trị nhỏ nhất của biểu thức \(A = 2017\) khi \(x = - 2014;y = 2015;z = 2016\).
Lời giải
Hướng dẫn giải
4.1.
Ta có đáy nhỏ
\(AB = 4{\rm{ cm}}\) và độ dài đáy lớn gấp đôi độ dài của đáy nhỏ.
Do đó độ dài đáy lớn \(CD\) là \(4.2 = 8\) (cm)
Kẻ \(AH \bot CD{\rm{ }}\left( {H \in CD} \right)\), khi đó \(AH\) là chiều cao của hình thang cân \(ABCD.\)
Diện tích của hình thang cân \(ABCD\) bằng \(18{\rm{ c}}{{\rm{m}}^2}\), suy ra \(S = \frac{{\left( {AB + CD} \right).AH}}{2} = 18\).
Mà \(AB = 4{\rm{ cm, }}CD = 8{\rm{ cm}}{\rm{.}}\)
Suy ra \(S = \frac{{\left( {4 + 8} \right).AH}}{2} = 18\).
Vậy chiều cao của hình thang cân là \(AH = \frac{{18.2}}{{4 + 8}} = \frac{{36}}{{12}} = 3\).
4.2. Giả sử tam giác \(ABC\) có \(AB = 3{\rm{ cm, }}AC = 7{\rm{ cm}}{\rm{.}}\)
Theo bất đẳng thức tam giác, ta có: \(\left| {AB - AC} \right| < BC < AB + AC\).
Do đó, \(4 < BC < 10\).
Mà tam giác \(ABC\) cân nên suy ra \(BC = 7{\rm{ cm}}{\rm{.}}\)
Vậy chu vi tam giác \(ABC\) là \(3 + 7 + 7 = 17{\rm{ }}\left( {{\rm{cm}}} \right)\).
Lời giải
Hướng dẫn giải
a) Xét \(\Delta HKC\), có:
Ta có: \(BH = 2BK\) hay \(BK + KH = 2BK\) suy ra \(KH = BK.\)
Mà \(MK = \frac{1}{2}KB\) nên \(MK = \frac{1}{2}KH\) hay \(M\) là trung điểm của \(KH\).
Lại có: \(IC = \frac{1}{3}CA = \frac{1}{3}.2MC = \frac{2}{3}MC\) với \(MC\) là trung tuyến của \(\Delta HKC\).
Suy ra \(I\) là trọng tâm của \(\Delta HKC\).
Mà đường thẳng \(KI\) cắt \(HC\) ở \(E\) nên \(E\) là trung điểm của \(HC.\)
b) Ta có \(I\) là trọng tâm của \(\Delta HKC\) nên \(\frac{{IE}}{{KE}} = \frac{2}{3}\) và \(\frac{{IK}}{{KE}} = \frac{1}{3}\) do đó, \(\frac{{IE}}{{IK}} = \frac{1}{2}.\)
Ta có \(\frac{{MI}}{{MC}} = \frac{1}{3}\) hay \(MI = \frac{1}{3}MC\).
Mà \(MC = \frac{1}{2}AC\).
Suy ra \(MI = \frac{1}{3}.\frac{1}{2}AC = \frac{1}{6}AC\).
Do đó, \(\frac{{MI}}{{AC}} = \frac{1}{6}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.