Câu hỏi:

30/06/2025 25 Lưu

(0,5 điểm) Chứng minh rằng nếu \(\frac{{a + b}}{{b + c}} = \frac{{c + d}}{{d + a}}{\rm{ }}\left( {c + d \ne 0} \right)\) thì \(a = c\) hoặc \(a + b + c + d = 0\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Vì \(\frac{{a + b}}{{b + c}} = \frac{{c + d}}{{d + a}}\) nên \(\frac{{a + b}}{{c + d}} = \frac{{c + b}}{{d + a}}\).

Suy ra \(\frac{{a + b}}{{c + d}} + 1 = \frac{{c + b}}{{d + a}} + 1\).

Do đó \(\frac{{a + b}}{{c + d}} + \frac{{c + d}}{{c + d}} = \frac{{c + b}}{{d + a}} + \frac{{d + a}}{{d + a}}\) hay \(\frac{{a + b + c + d}}{{c + d}} = \frac{{c + b + d + a}}{{d + a}}\) (*)

Nếu \(a + b + c + d \ne 0\) nên từ (*) suy ra \(a + d = c + d\) suy ra \(a = c.\)

Nếu \(a + b + c + d = 0\) thì ta có tỉ lệ thức luôn đúng (\(a\) có thể bằng hoặc không bằng \(c\))

Vậy nếu \(\frac{{a + b}}{{b + c}} = \frac{{c + d}}{{d + a}}{\rm{ }}\left( {c + d \ne 0} \right)\) thì \(a = c\) hoặc \(a + b + c + d = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

(1,5 điểm) Cho tam giác   A B C   có   M   là trung điểm của   A C  . Trên đoạn   B M   lấy điểm   K   sao cho   M K = 1 2 K B  . Điểm   H   thuộc tia đối của tia   M K   sao cho   B H = 2 B K .   Gọi   I   là điểm thuộc cạnh   A C   và   I C = 1 3 C A  . Đường   K I   cắt   H C   ở   E  .  a) Chứng minh   I   là trọng tâm của   Δ H K C   và   E   là trung điểm của   H C .    b) Tính các tỉ số   I E I K ; M I A C  . (ảnh 1)

a) Xét \(\Delta HKC\), có:

Ta có: \(BH = 2BK\) hay \(BK + KH = 2BK\) suy ra \(KH = BK.\)

Mà \(MK = \frac{1}{2}KB\) nên \(MK = \frac{1}{2}KH\) hay \(M\) là trung điểm của \(KH\).

Lại có: \(IC = \frac{1}{3}CA = \frac{1}{3}.2MC = \frac{2}{3}MC\) với \(MC\) là trung tuyến của \(\Delta HKC\).

Suy ra \(I\) là trọng tâm của \(\Delta HKC\).

Mà đường thẳng \(KI\) cắt \(HC\) ở \(E\) nên \(E\) là trung điểm của \(HC.\)

b) Ta có \(I\) là trọng tâm của \(\Delta HKC\) nên \(\frac{{IE}}{{KE}} = \frac{2}{3}\) và \(\frac{{IK}}{{KE}} = \frac{1}{3}\) do đó, \(\frac{{IE}}{{IK}} = \frac{1}{2}.\)

Ta có \(\frac{{MI}}{{MC}} = \frac{1}{3}\) hay \(MI = \frac{1}{3}MC\).

Mà \(MC = \frac{1}{2}AC\).

Suy ra \(MI = \frac{1}{3}.\frac{1}{2}AC = \frac{1}{6}AC\).

Do đó, \(\frac{{MI}}{{AC}} = \frac{1}{6}.\)

Lời giải

Hướng dẫn giải

4.1.

(1,5 điểm)  4.1. Cho hình thang cân có độ dài đáy nhỏ bằng   4 c m  , độ dài đáy lớn gấp đôi độ dài đáy nhỏ. Tính khoảng cách giữa hai đáy của hình thang cân, biết diện tích hình thang cân đó bằng   18 c m 2  .  4.2. Tính chu vi của tam giác cân có hai cạnh bằng   3 c m   và   7 c m  . (ảnh 1)

Ta có đáy nhỏ

\(AB = 4{\rm{ cm}}\) và độ dài đáy lớn gấp đôi độ dài của đáy nhỏ.

Do đó độ dài đáy lớn \(CD\) là \(4.2 = 8\) (cm)

Kẻ \(AH \bot CD{\rm{ }}\left( {H \in CD} \right)\), khi đó \(AH\) là chiều cao của hình thang cân \(ABCD.\)

Diện tích của hình thang cân \(ABCD\) bằng \(18{\rm{ c}}{{\rm{m}}^2}\), suy ra \(S = \frac{{\left( {AB + CD} \right).AH}}{2} = 18\).

Mà \(AB = 4{\rm{ cm, }}CD = 8{\rm{ cm}}{\rm{.}}\)

Suy ra \(S = \frac{{\left( {4 + 8} \right).AH}}{2} = 18\).

Vậy chiều cao của hình thang cân là \(AH = \frac{{18.2}}{{4 + 8}} = \frac{{36}}{{12}} = 3\).

4.2. Giả sử tam giác \(ABC\) có \(AB = 3{\rm{ cm, }}AC = 7{\rm{ cm}}{\rm{.}}\)

Theo bất đẳng thức tam giác, ta có: \(\left| {AB - AC} \right| < BC < AB + AC\).

Do đó, \(4 < BC < 10\).

Mà tam giác \(ABC\) cân nên suy ra \(BC = 7{\rm{ cm}}{\rm{.}}\)

Vậy chu vi tam giác \(ABC\) là \(3 + 7 + 7 = 17{\rm{ }}\left( {{\rm{cm}}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP