Câu hỏi:

30/06/2025 27 Lưu

(3,0 điểm)

3.1. Cho đa thức \(Q\left( x \right) = - 3{x^3} + x - {x^4} - 3 + {x^3} + 4x - 2{x^2}\).

a) Thu gọn và sắp xếp các đa thức sau theo lũy thừa giảm dần của biến.

b) Chỉ ra hệ số cao nhất, hệ số tự do và bậc của đa thức.

c) Tính giá trị của đa thức \(Q\left( {\frac{1}{2}} \right),Q\left( 1 \right),Q\left( { - 1} \right)\).

d) Tìm đa thức \(T\left( x \right)\), biết \(T\left( x \right) - {x^4} + 2{x^3} - 5x = Q\left( x \right)\).

3.2.Tính giá trị nhỏ nhất của biểu thức \(A = {\left( {x + 2014} \right)^2} + {\left( {y - 2015} \right)^2} + {\left( {z - 2016} \right)^2} + 2017\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

3.1. a) Ta có: \(Q\left( x \right) = - 3{x^3} + x - {x^4} - 3 + {x^3} + 4x - 2{x^2}\)

\(Q\left( x \right) = \left( { - 3{x^3} + {x^3}} \right) - {x^4} - 3 + \left( {4x + x} \right) - 2{x^2}\)

\(Q\left( x \right) = - {x^4} - 2{x^3} - 2{x^2} + 5x - 3\).

b) Đa thức \(Q\left( x \right)\) có hệ số cao nhất là \( - 1\), hệ số tự do là \( - 3\) và bậc là \(4\).

c) Ta có: \(Q\left( {\frac{1}{2}} \right) = - {\left( {\frac{1}{2}} \right)^4} - 2{\left( {\frac{1}{2}} \right)^3} - 2{\left( {\frac{1}{2}} \right)^2} + 5.\frac{1}{2} - 3\)

\(Q\left( {\frac{1}{2}} \right) = - \frac{1}{{16}} - \frac{1}{4} - \frac{1}{2} + \frac{5}{2} - 3 = \frac{{ - 21}}{{16}}\).

\(Q\left( 1 \right) = - {\left( 1 \right)^4} - {2.1^3} - {2.1^2} + 5.1 - 3 = - 3\).

\(Q\left( { - 1} \right) = - {\left( { - 1} \right)^4} - 2.{\left( { - 1} \right)^3} - 2.{\left( { - 1} \right)^2} + 5.\left( { - 1} \right) - 3 = - 9\).

d) Ta có: \(T\left( x \right) - {x^4} + 2{x^3} - 5x = Q\left( x \right)\) suy ra \(T\left( x \right) = Q\left( x \right) + {x^4} - 2{x^3} + 5x\)

Do đó, \(T\left( x \right) = Q\left( x \right) + {x^4} - 2{x^3} + 5x\)

\(T\left( x \right) = - {x^4} - 2{x^3} - 2{x^2} + 5x - 3 + {x^4} - 2{x^3} + 5x = - 4{x^3} - 2{x^2} + 10x - 3\).

Vậy \(T\left( x \right) = - 4{x^3} - 2{x^2} + 10x - 3\).

3.2. Ta có: \(A = {\left( {x + 2014} \right)^2} + {\left( {y - 2015} \right)^2} + {\left( {z - 2016} \right)^2} + 2017\)

Nhận thấy \({\left( {x + 2014} \right)^2} \ge 0\); \({\left( {y - 2015} \right)^2} \ge 0\); \({\left( {z - 2016} \right)^2} \ge 0\)

Do đó, \({\left( {x + 2014} \right)^2} + {\left( {y - 2015} \right)^2} + {\left( {z - 2016} \right)^2} + 2017 \ge 2017\) khi đồng thời \(x + 2014 = 0\); \(y - 2015 = 0\); \(z - 2016 = 0\).

Suy ra \(x = - 2014;y = 2015;z = 2016\).

Vậy giá trị nhỏ nhất của biểu thức \(A = 2017\) khi \(x = - 2014;y = 2015;z = 2016\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

(1,5 điểm) Cho tam giác   A B C   có   M   là trung điểm của   A C  . Trên đoạn   B M   lấy điểm   K   sao cho   M K = 1 2 K B  . Điểm   H   thuộc tia đối của tia   M K   sao cho   B H = 2 B K .   Gọi   I   là điểm thuộc cạnh   A C   và   I C = 1 3 C A  . Đường   K I   cắt   H C   ở   E  .  a) Chứng minh   I   là trọng tâm của   Δ H K C   và   E   là trung điểm của   H C .    b) Tính các tỉ số   I E I K ; M I A C  . (ảnh 1)

a) Xét \(\Delta HKC\), có:

Ta có: \(BH = 2BK\) hay \(BK + KH = 2BK\) suy ra \(KH = BK.\)

Mà \(MK = \frac{1}{2}KB\) nên \(MK = \frac{1}{2}KH\) hay \(M\) là trung điểm của \(KH\).

Lại có: \(IC = \frac{1}{3}CA = \frac{1}{3}.2MC = \frac{2}{3}MC\) với \(MC\) là trung tuyến của \(\Delta HKC\).

Suy ra \(I\) là trọng tâm của \(\Delta HKC\).

Mà đường thẳng \(KI\) cắt \(HC\) ở \(E\) nên \(E\) là trung điểm của \(HC.\)

b) Ta có \(I\) là trọng tâm của \(\Delta HKC\) nên \(\frac{{IE}}{{KE}} = \frac{2}{3}\) và \(\frac{{IK}}{{KE}} = \frac{1}{3}\) do đó, \(\frac{{IE}}{{IK}} = \frac{1}{2}.\)

Ta có \(\frac{{MI}}{{MC}} = \frac{1}{3}\) hay \(MI = \frac{1}{3}MC\).

Mà \(MC = \frac{1}{2}AC\).

Suy ra \(MI = \frac{1}{3}.\frac{1}{2}AC = \frac{1}{6}AC\).

Do đó, \(\frac{{MI}}{{AC}} = \frac{1}{6}.\)

Lời giải

Hướng dẫn giải

4.1.

(1,5 điểm)  4.1. Cho hình thang cân có độ dài đáy nhỏ bằng   4 c m  , độ dài đáy lớn gấp đôi độ dài đáy nhỏ. Tính khoảng cách giữa hai đáy của hình thang cân, biết diện tích hình thang cân đó bằng   18 c m 2  .  4.2. Tính chu vi của tam giác cân có hai cạnh bằng   3 c m   và   7 c m  . (ảnh 1)

Ta có đáy nhỏ

\(AB = 4{\rm{ cm}}\) và độ dài đáy lớn gấp đôi độ dài của đáy nhỏ.

Do đó độ dài đáy lớn \(CD\) là \(4.2 = 8\) (cm)

Kẻ \(AH \bot CD{\rm{ }}\left( {H \in CD} \right)\), khi đó \(AH\) là chiều cao của hình thang cân \(ABCD.\)

Diện tích của hình thang cân \(ABCD\) bằng \(18{\rm{ c}}{{\rm{m}}^2}\), suy ra \(S = \frac{{\left( {AB + CD} \right).AH}}{2} = 18\).

Mà \(AB = 4{\rm{ cm, }}CD = 8{\rm{ cm}}{\rm{.}}\)

Suy ra \(S = \frac{{\left( {4 + 8} \right).AH}}{2} = 18\).

Vậy chiều cao của hình thang cân là \(AH = \frac{{18.2}}{{4 + 8}} = \frac{{36}}{{12}} = 3\).

4.2. Giả sử tam giác \(ABC\) có \(AB = 3{\rm{ cm, }}AC = 7{\rm{ cm}}{\rm{.}}\)

Theo bất đẳng thức tam giác, ta có: \(\left| {AB - AC} \right| < BC < AB + AC\).

Do đó, \(4 < BC < 10\).

Mà tam giác \(ABC\) cân nên suy ra \(BC = 7{\rm{ cm}}{\rm{.}}\)

Vậy chu vi tam giác \(ABC\) là \(3 + 7 + 7 = 17{\rm{ }}\left( {{\rm{cm}}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP