Câu hỏi:

30/06/2025 103 Lưu

(1,5 điểm) Cho tam giác \(ABC\) có \(M\) là trung điểm của \(AC\). Trên đoạn \(BM\) lấy điểm \(K\) sao cho \(MK = \frac{1}{2}KB\). Điểm \(H\) thuộc tia đối của tia \(MK\) sao cho \(BH = 2BK.\) Gọi \(I\) là điểm thuộc cạnh \(AC\) và \(IC = \frac{1}{3}CA\). Đường \(KI\) cắt \(HC\) ở \(E\).

a) Chứng minh \(I\) là trọng tâm của \(\Delta HKC\) và \(E\) là trung điểm của \(HC.\)

b) Tính các tỉ số \(\frac{{IE}}{{IK}};\frac{{MI}}{{AC}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

(1,5 điểm) Cho tam giác   A B C   có   M   là trung điểm của   A C  . Trên đoạn   B M   lấy điểm   K   sao cho   M K = 1 2 K B  . Điểm   H   thuộc tia đối của tia   M K   sao cho   B H = 2 B K .   Gọi   I   là điểm thuộc cạnh   A C   và   I C = 1 3 C A  . Đường   K I   cắt   H C   ở   E  .  a) Chứng minh   I   là trọng tâm của   Δ H K C   và   E   là trung điểm của   H C .    b) Tính các tỉ số   I E I K ; M I A C  . (ảnh 1)

a) Xét \(\Delta HKC\), có:

Ta có: \(BH = 2BK\) hay \(BK + KH = 2BK\) suy ra \(KH = BK.\)

Mà \(MK = \frac{1}{2}KB\) nên \(MK = \frac{1}{2}KH\) hay \(M\) là trung điểm của \(KH\).

Lại có: \(IC = \frac{1}{3}CA = \frac{1}{3}.2MC = \frac{2}{3}MC\) với \(MC\) là trung tuyến của \(\Delta HKC\).

Suy ra \(I\) là trọng tâm của \(\Delta HKC\).

Mà đường thẳng \(KI\) cắt \(HC\) ở \(E\) nên \(E\) là trung điểm của \(HC.\)

b) Ta có \(I\) là trọng tâm của \(\Delta HKC\) nên \(\frac{{IE}}{{KE}} = \frac{2}{3}\) và \(\frac{{IK}}{{KE}} = \frac{1}{3}\) do đó, \(\frac{{IE}}{{IK}} = \frac{1}{2}.\)

Ta có \(\frac{{MI}}{{MC}} = \frac{1}{3}\) hay \(MI = \frac{1}{3}MC\).

Mà \(MC = \frac{1}{2}AC\).

Suy ra \(MI = \frac{1}{3}.\frac{1}{2}AC = \frac{1}{6}AC\).

Do đó, \(\frac{{MI}}{{AC}} = \frac{1}{6}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

4.1.

(1,5 điểm)  4.1. Cho hình thang cân có độ dài đáy nhỏ bằng   4 c m  , độ dài đáy lớn gấp đôi độ dài đáy nhỏ. Tính khoảng cách giữa hai đáy của hình thang cân, biết diện tích hình thang cân đó bằng   18 c m 2  .  4.2. Tính chu vi của tam giác cân có hai cạnh bằng   3 c m   và   7 c m  . (ảnh 1)

Ta có đáy nhỏ

\(AB = 4{\rm{ cm}}\) và độ dài đáy lớn gấp đôi độ dài của đáy nhỏ.

Do đó độ dài đáy lớn \(CD\) là \(4.2 = 8\) (cm)

Kẻ \(AH \bot CD{\rm{ }}\left( {H \in CD} \right)\), khi đó \(AH\) là chiều cao của hình thang cân \(ABCD.\)

Diện tích của hình thang cân \(ABCD\) bằng \(18{\rm{ c}}{{\rm{m}}^2}\), suy ra \(S = \frac{{\left( {AB + CD} \right).AH}}{2} = 18\).

Mà \(AB = 4{\rm{ cm, }}CD = 8{\rm{ cm}}{\rm{.}}\)

Suy ra \(S = \frac{{\left( {4 + 8} \right).AH}}{2} = 18\).

Vậy chiều cao của hình thang cân là \(AH = \frac{{18.2}}{{4 + 8}} = \frac{{36}}{{12}} = 3\).

4.2. Giả sử tam giác \(ABC\) có \(AB = 3{\rm{ cm, }}AC = 7{\rm{ cm}}{\rm{.}}\)

Theo bất đẳng thức tam giác, ta có: \(\left| {AB - AC} \right| < BC < AB + AC\).

Do đó, \(4 < BC < 10\).

Mà tam giác \(ABC\) cân nên suy ra \(BC = 7{\rm{ cm}}{\rm{.}}\)

Vậy chu vi tam giác \(ABC\) là \(3 + 7 + 7 = 17{\rm{ }}\left( {{\rm{cm}}} \right)\).

Lời giải

Hướng dẫn giải

3.1. a) Ta có: \(Q\left( x \right) = - 3{x^3} + x - {x^4} - 3 + {x^3} + 4x - 2{x^2}\)

\(Q\left( x \right) = \left( { - 3{x^3} + {x^3}} \right) - {x^4} - 3 + \left( {4x + x} \right) - 2{x^2}\)

\(Q\left( x \right) = - {x^4} - 2{x^3} - 2{x^2} + 5x - 3\).

b) Đa thức \(Q\left( x \right)\) có hệ số cao nhất là \( - 1\), hệ số tự do là \( - 3\) và bậc là \(4\).

c) Ta có: \(Q\left( {\frac{1}{2}} \right) = - {\left( {\frac{1}{2}} \right)^4} - 2{\left( {\frac{1}{2}} \right)^3} - 2{\left( {\frac{1}{2}} \right)^2} + 5.\frac{1}{2} - 3\)

\(Q\left( {\frac{1}{2}} \right) = - \frac{1}{{16}} - \frac{1}{4} - \frac{1}{2} + \frac{5}{2} - 3 = \frac{{ - 21}}{{16}}\).

\(Q\left( 1 \right) = - {\left( 1 \right)^4} - {2.1^3} - {2.1^2} + 5.1 - 3 = - 3\).

\(Q\left( { - 1} \right) = - {\left( { - 1} \right)^4} - 2.{\left( { - 1} \right)^3} - 2.{\left( { - 1} \right)^2} + 5.\left( { - 1} \right) - 3 = - 9\).

d) Ta có: \(T\left( x \right) - {x^4} + 2{x^3} - 5x = Q\left( x \right)\) suy ra \(T\left( x \right) = Q\left( x \right) + {x^4} - 2{x^3} + 5x\)

Do đó, \(T\left( x \right) = Q\left( x \right) + {x^4} - 2{x^3} + 5x\)

\(T\left( x \right) = - {x^4} - 2{x^3} - 2{x^2} + 5x - 3 + {x^4} - 2{x^3} + 5x = - 4{x^3} - 2{x^2} + 10x - 3\).

Vậy \(T\left( x \right) = - 4{x^3} - 2{x^2} + 10x - 3\).

3.2. Ta có: \(A = {\left( {x + 2014} \right)^2} + {\left( {y - 2015} \right)^2} + {\left( {z - 2016} \right)^2} + 2017\)

Nhận thấy \({\left( {x + 2014} \right)^2} \ge 0\); \({\left( {y - 2015} \right)^2} \ge 0\); \({\left( {z - 2016} \right)^2} \ge 0\)

Do đó, \({\left( {x + 2014} \right)^2} + {\left( {y - 2015} \right)^2} + {\left( {z - 2016} \right)^2} + 2017 \ge 2017\) khi đồng thời \(x + 2014 = 0\); \(y - 2015 = 0\); \(z - 2016 = 0\).

Suy ra \(x = - 2014;y = 2015;z = 2016\).

Vậy giá trị nhỏ nhất của biểu thức \(A = 2017\) khi \(x = - 2014;y = 2015;z = 2016\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP