Câu hỏi:
30/06/2025 15(2,0 điểm)
2.1. Để làm một công việc trong 8 giờ cần 30 công nhân. Nếu có 40 công nhân thì công việc đó hoàn thành trong mấy giờ? Biết rằng năng suất làm việc của các công nhân là như nhau.
2.2. Ba bạn An, Bình, Cầm có số kẹo tương ứng tỉ lệ với \(2;3;4\). Tính số kẹo của mỗi bạn, biết rằng Cầm nhiều hơn An \(8\) viên kẹo.
Quảng cáo
Trả lời:
Hướng dẫn giải
2.1. Gọi thời gian để hoàn thành công việc của \(40\) công nhân là \(t\) giờ \(\left( {t > 0} \right)\).
Vì khối lượng công việc là không dổi nên số công nhân và thời gian để hoàn thành công việc đó là hai đại lượng tỉ lệ nghịch, ta có: \(30.8 = 40t\) suy ra \(t = \frac{{30.8}}{{40}} = 6\).
Vậy thời gian để hoàn thành công việc của 40 công nhân là 6 giờ.
2.2. Gọi số viên kẹo tương ứng của An, Bình, Cầm lần lượt là \(a;b;c\) (viên kẹo) \(\left( {a;b;c \in \mathbb{N}} \right)\).
Vì số kẹo của An, Bình, Cầm tương ứng tỉ lệ với \(2;3;4\) nên ta có: \(\frac{a}{2} = \frac{b}{3} = \frac{c}{4}.\)
Mặt khác, Cầm nhiều hơn An \(8\) viên kẹo nên ta có \(c - a = 8\) (viên)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có: \(\frac{a}{2} = \frac{b}{3} = \frac{c}{4} = \frac{{c - a}}{{4 - 2}} = \frac{8}{2} = 4\).
Do đó, \(\frac{a}{2} = 4\), suy ra \(a = 2.4 = 8\).
\(\frac{b}{3} = 4\), suy ra \(b = 3.4 = 12\).
\(\frac{c}{4} = 4\), suy ra \(c = 4.4 = 16\).
Vậy số kẹo của An, Bình, Cầm lần lượt là \(8;12\) và \(16\) viên.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Vì \(AD\) cắt \(BF\) tại \(N\) nên \(FN = BN = \frac{1}{2}BF\) (1).
Chứng minh tương tự, ta được: \(AM = MC = \frac{1}{2}AC\) (2)
Vì \(OA\) là đường tủng tuyến của tam giác \(ABC\) nên \(O\) là trung điểm của \(BC\) hay \(OB = OC\).
Xét \(\Delta OFB\) và \(\Delta OAC\) có:
\(OF = OA\) (gt)
\(\widehat {FOB} = \widehat {AOC}\) (hai góc đối đỉnh)
\(OB = OC\) (cmt)
Do đó, \(\Delta OFB = \Delta OAC\) (c.g.c)
Suy ra \(\widehat {OFB} = \widehat {OAC}\) (hai góc tương ứng) và \(BF = AC\) (hai cạnh tương ứng) (3)
Từ (1), (2) và (3) suy ra \(AM = FN\).
Xét \(\Delta AOM\) và \(\Delta FON\) có:
\(AM = FN\) (cmt)
\(\widehat {OFN} = \widehat {OAM}\) (cmt)
\(OF = OA\) (gt)
Do đó, \(\Delta AOM = \Delta FON\) (c.g.c)
Suy ra \(\widehat {AOM} = \widehat {FON}\) (hai góc tương ứng)
Mà \(\widehat {AOM} + \widehat {FOM} = 180^\circ \) (hai góc kề bù)
Suy ra \(\widehat {FON} + \widehat {FOM} = 180^\circ \).
Do đó, \(M,O,N\) thẳng hàng.
Lời giải
Hướng dẫn giải
a) \(\frac{x}{3} = \frac{{2,5}}{{1,5}}\) suy ra \(1,5x = 2,5.3\), do đó \(x = \frac{{2,5.3}}{{1,5}} = 5\).
Vậy \(x = 5\).
b) \(\frac{x}{{15}} = \frac{y}{7}\) và \(y - x = 16\).
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{{15}} = \frac{y}{7} = \frac{{y - x}}{{7 - 15}} = \frac{{16}}{{ - 8}} = - 2\).
Suy ra \(x = 15.\left( { - 2} \right) = - 30\) và \(y = 7.\left( { - 2} \right) = - 14\).
Vậy \(x = - 30\) và \(y = - 14\).
c) \(\frac{x}{2} = \frac{y}{3} = \frac{z}{5}\) và \(x - 2y + 3z = 38.\)
Ta có \(\frac{x}{2} = \frac{y}{3} = \frac{z}{5}\) hay \(\frac{x}{2} = \frac{{2y}}{6} = \frac{{3z}}{{15}}\).
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2} = \frac{{2y}}{6} = \frac{{3z}}{{15}} = \frac{{x - 2y + 3z}}{{2 + 6 + 15}} = \frac{{38}}{{23}}\).
Suy ra \(x = \frac{{76}}{{23}};y = \frac{{119}}{{23}};z = \frac{{190}}{{23}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.