Câu hỏi:

03/07/2025 128 Lưu

Cho tam giác \[ABC\] vuông tại \[C\] có \[BC = 1,2\,\,{\rm{cm}}\,{\rm{, }}AC = 0,9\,\,{\rm{cm}}.\] Tính \[\sin B + \cos B.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Theo định lí Pythagore, ta có: \(A{B^2} = A{C^2} + B{C^2}\)

Suy ra \[AB = \sqrt {0,{9^2} + 1,{2^2}} = 1,5\,\,\left( {{\rm{cm}}} \right)\].

Xét tam giác \(ABC\) vuông tại \(C\) có:

\(\sin B = \frac{{AC}}{{AB}} = \frac{{0,9}}{{1,5}} = \frac{3}{5} = 0,6\);

\(\cos B = \frac{{BC}}{{AB}} = \frac{{1,2}}{{1,5}} = \frac{4}{5} = 0,8.\)

Cho tam giác   A B C   vuông tại   C   có   B C = 1 , 2 c m , A C = 0 , 9 c m .   Tính   sin B + cos B . (ảnh 1)

Do đó \[\sin B + \cos B = 0,6 + 0,8 = 1,4.\]

Vậy điền đáp án là: \[1,4.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

1) Từ \(B\) kẻ \(BK \bot AC\) tại \(K.\)

Xét tam giác \(BCK\) vuông tại \(K\) nên

\(BK = BC \cdot \sin C = 16 \cdot \sin 30^\circ = 8\,\,\left( {{\rm{cm}}} \right)\)

Xét tam giác \(ABC\) có \(\widehat {BAK}\) là góc ngoài nên

\(\widehat {BAK} = \widehat {ABC} + \widehat {ACB} = 45^\circ + 30^\circ = 75^\circ .\)

Tam giác \(ABK\) vuông tại \(K\) nên \(\widehat {BAK} + \widehat {ABK} = 90^\circ \).

1) Cho tam giác   A B C   có   B C = 16 c m , ˆ A B C = 45 ∘ , ˆ A C B = 30 ∘ .   Gọi   N   là chân đường vuông góc kẻ từ   A   đến cạnh   B C .   Tính độ dài cạnh   A N   (làm tròn kết quả đến chữ số thập phân thứ hai).  2) Người ta cần lắp đặt một thiết bị chiếu sáng gắn trên tường cho một phòng triển lãm như hình vẽ. Thiết bị này có góc chiếu sáng là   20 ∘   và cần đặt cao hơn mặt đất là   2 , 5 m .   Người ta đặt thiết bị chiếu sáng này sát tường và được canh chỉnh sao cho trên mặt đất dải ánh sáng bắt đầu từ vị trí cách tường   2 m   (như hình vẽ). Tính độ dài vùng được chiếu sáng trên mặt đất (làm tròn kết quả đến chữ số thập phân thứ nhất) (ảnh 3)

Do đó

\(\widehat {ABK} = 90^\circ - \widehat {BAK} = 90^\circ - 75^\circ = 15^\circ .\)

Ta có \(\cos \widehat {ABK} = \frac{{BK}}{{AB}}\) suy ra \(AB = \frac{{BK}}{{\cos \widehat {ABK}}} = \frac{8}{{\cos 15^\circ }} \approx 8,28\,\,\left( {{\rm{cm}}} \right)\)

Tam giác \(ANB\) vuông cân tại \(N\) nên \(\widehat {ABN} = \widehat {BAN} = 45^\circ \); \(\sin \widehat {ABN} = \frac{{AN}}{{AB}}\).

Suy ra \(AN = AB \cdot \sin \widehat {ABK} \approx 8,28 \cdot \sin 45^\circ \approx 5,85\,\,\left( {{\rm{cm}}} \right)\).

Vậy \(AN \approx 5,85\,\,{\rm{cm}}\,.\)

1) Cho tam giác   A B C   có   B C = 16 c m , ˆ A B C = 45 ∘ , ˆ A C B = 30 ∘ .   Gọi   N   là chân đường vuông góc kẻ từ   A   đến cạnh   B C .   Tính độ dài cạnh   A N   (làm (ảnh 1)

Lời giải

Hướng dẫn giải

a) Đúng. Phương trình \[\left( * \right)\] có các hệ số là \[a = 2\,;\,\,b = - 5\,;\,\,c = 1.\]

b) Sai. Để phương trình có dạng \[ax + by = c\] là phương trình bậc nhất hai ẩn thì \(a \ne 0\) hoặc \(b \ne 0.\)

Do đó, phương trình \[\left( * \right)\] là phương trình bậc nhất hai ẩn \[x,{\rm{ }}y\] vì \(a = 2 \ne 0\); \(b = - 5 \ne 0.\)

c) Sai. Thay \[x = 0\,;{\rm{ }}y = 5\] vào phương trình \[\left( * \right)\], ta được: \[4 \cdot 0 - 7 \cdot 5 = --\,35 \ne - 1.\]

Do đó cặp số \[\left( {0\,;\,\,5} \right)\] không phải là nghiệm của phương trình \[\left( * \right)\].

d) Đúng. Ta có \[4x - 7y = - 1\] suy ra \[7y = 4x + 1\] nên \[y = \frac{4}{7}x + \frac{1}{7}\].

Do đó, biểu diễn hình học tất cả các nghiệm của phương trình \[\left( * \right)\] là đường thẳng \[y = \frac{4}{7}x + \frac{1}{7}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP