Câu hỏi:
03/07/2025 12(2,5 điểm)
1. Cho tam giác \(ABC\) có \[AB = 4{\rm{\;cm}}\], \[BC = 4,5{\rm{\;cm,}}\] \[\widehat {B\,} = 40^\circ \]. Gọi \(AH\) là đường cao kẻ từ đỉnh \(A\) của tam giác. Tính độ dài các đoạn thẳng \(AH,\,\,BH,\,\,AC\) và số đo góc \(C\) của tam giác \(ABC\) (kết quả làm tròn đến hàng phần trăm của cm và làm tròn đến phút của số đo góc).
2. Cánh tay robot đặt trên mặt đất và có vị trí như hình vẽ bên. Tính độ cao của điểm \(A\) trên đầu cánh tay robot so với mặt đất.

Quảng cáo
Trả lời:
Hướng dẫn giải
1. Xét \[\Delta ABH\] vuông tại \[H,\] ta có: \[AH = AB \cdot \sin B = 4 \cdot \sin 40^\circ \approx 2,57\] (cm); \(BH = AB \cdot \cos B = 4 \cdot \cos 40^\circ \approx 3,06\) (cm). Ta có \(BC = BH + HC\) Suy ra \(HC = BC - BH \approx 4,5 - 3,06 = 1,44\) (cm). |
|
Xét \[\Delta AHC\] vuông tại \[H\], theo định lí Pythagore, ta có:
\[A{C^2} = A{H^2} + H{C^2} \approx 2,{57^2} + 1,{44^2} = 8,6785\]
Suy ra \(AC \approx 2,95\) (cm).
Trong \[\Delta AHC\], ta cũng có: \(\tan C = \frac{{AH}}{{HC}} \approx \frac{{2,57}}{{1,44}} = \frac{{257}}{{144}}.\) Suy ra \(\widehat {C\,} \approx 60^\circ 44'.\)
2. Xét \(\Delta BCN\) vuông tại \(N,\) ta có:
\(BN = BC \cdot \sin \widehat {BCN} = 60 \cdot \sin 32^\circ \approx 31,80{\rm{\;(cm)}}{\rm{.}}\)
Ta thấy \(NC\) và \(BM\) là các đoạn thẳng nằm trên phương ngang nên \(NC\,{\rm{//}}\,BM,\) suy ra \(\widehat {CBM} = \widehat {BCN} = 32^\circ \) (so le trong).
Khi đó, \(\widehat {ABM} = \widehat {ABC} - \widehat {CBM} = 53^\circ - 32^\circ = 21^\circ \).
Xét \(\Delta ABM\) vuông tại \(M\), ta có:
\(AM = AB \cdot \sin \widehat {ABM} = 60 \cdot \sin 21^\circ \approx 21,50\) (cm).
Vậy, độ cao của điểm \(A\) trên đầu cánh tay robot so với mặt đất là:
\(AM + BN + CP \approx 21,50 + 31,80 + 17 = 70,3\) (cm).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
1. a) \(\left( {\frac{1}{2}x - 1} \right)\left( {3 + 5x} \right) = 0\) \(\frac{1}{2}x - 1 = 0\) hoặc \(3 + 5x = 0\) \(\frac{1}{2}x = 1\) hoặc \(5x = - 3\) \(x = 2\) hoặc \(x = - \frac{3}{5}\) Vậy phương trình đã cho có hai nghiệm là \(x = 2;\) \(x = - \frac{3}{5}\). |
1. b) Điều kiện xác định: \(x \ne 2,\,\,x \ne - 2.\) \(\frac{{x + 2}}{{x - 2}} = \frac{{x - 2}}{{x + 2}} + \frac{{16}}{{{x^2} - 4}}\) \(\frac{{{{\left( {x + 2} \right)}^2}}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \frac{{{{\left( {x - 2} \right)}^2}}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} + \frac{{16}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\) \({\left( {x + 2} \right)^2} = {\left( {x - 2} \right)^2} + 16\) \({x^2} + 4x + 4 = {x^2} - 4x + 4 + 16\) \(8x = 16\) \(x = 2\) (không thỏa mãn điều kiện) Vậy phương trình đã cho vô nghiệm. |
2. a) \(5 + \frac{2}{3}x > 3\) \(\frac{2}{3}x > - 2\) \(\frac{2}{3}x \cdot \frac{3}{2} > - 2 \cdot \frac{3}{2}\) \(x > - 3\). Vậy bất phương trình đã cho có nghiệm là \(x > - 3\). 2. b) \[{\left( {x - 1} \right)^2} < x\left( {x + 3} \right)\] \[{x^2} - 2x + 1 < {x^2} + 3x\] \[ - 5x < - 1\] \[x > \frac{1}{5}\] Vậy nghiệm bất phương trình đã cho là \[x > \frac{1}{5}\]. |
2. c) \[\frac{{2x - 1}}{3} - \frac{{x + 2}}{2} < \frac{{5x + 4}}{6}.\] \[\frac{{2\left( {2x - 1} \right)}}{6} - \frac{{3\left( {x + 2} \right)}}{6} < \frac{{5x + 4}}{6}\] \[2\left( {2x - 1} \right) - 3\left( {x + 2} \right) < 5x + 4\] \[4x - 2 - 3x - 6 < 5x + 4\] \[x - 8 < 5x + 4\] \[x - 5x < 4 + 8\] \[ - 4x < 12\] \[x > - 3\]. Vậy nghiệm của bất phương trình đã cho là \[x > - 3\]. |
Lời giải
Hướng dẫn giải
Đáp án: a) Đ;b) S;c) Đ; d) S.
⦁ Do \(a > 1\) nên \(a - 1 > 0\). Do đó ý a) là đúng.
⦁ Do \(a > b\) nên \(a - b > 0\). Do đó ý b) là sai.
⦁ Do \(1 > b\) hay \(b < 1\) nên \(b - 1 < 0\), mà \(a - 1 > 0\) suy ra \(\left( {a - 1} \right)\left( {b - 1} \right) < 0.\) Do đó ý c) là đúng.
⦁ Ta có \(a - 2b = \left( {a - 1} \right) - 2\left( {b - 1} \right) - 1\)
Do \(b - 1 < 0\) nên \( - 2\left( {b - 1} \right) > 0\).</>
Lại có \(a - 1 > 0\) nên \(\left( {a - 1} \right) - 2\left( {b - 1} \right) > 0,\) suy ra \(\left( {a - 1} \right) - 2\left( {b - 1} \right) - 1 > - 1\)
Như vậy \(2a - b > - 1.\) Do đó ý d) là sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.