Câu hỏi:

03/07/2025 49 Lưu

(2,5 điểm)

1. Cho tam giác \(ABC\) có \[AB = 4{\rm{\;cm}}\], \[BC = 4,5{\rm{\;cm,}}\] \[\widehat {B\,} = 40^\circ \]. Gọi \(AH\) là đường cao kẻ từ đỉnh \(A\) của tam giác. Tính độ dài các đoạn thẳng \(AH,\,\,BH,\,\,AC\) và số đo góc \(C\) của tam giác \(ABC\) (kết quả làm tròn đến hàng phần trăm của cm và làm tròn đến phút của số đo góc).

2. Cánh tay robot đặt trên mặt đất và có vị trí như hình vẽ bên. Tính độ cao của điểm \(A\) trên đầu cánh tay robot so với mặt đất.

(2,5 điểm)  1. Cho tam giác   A B C   có   A B = 4 c m  ,   B C = 4 , 5 c m ,     ˆ B = 40 ∘  . Gọi   A H   là đường cao kẻ từ đỉnh   A   của tam giác. Tính độ dài các đoạn thẳng   A H , B H , A C   và số đo góc   C   của tam giác   A B C   (kết quả làm tròn đến hàng phần trăm của cm và làm tròn đến phút của số đo góc). (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

1. Xét \[\Delta ABH\] vuông tại \[H,\] ta có:

\[AH = AB \cdot \sin B = 4 \cdot \sin 40^\circ \approx 2,57\] (cm);

\(BH = AB \cdot \cos B = 4 \cdot \cos 40^\circ \approx 3,06\) (cm).

Ta có \(BC = BH + HC\)

Suy ra \(HC = BC - BH \approx 4,5 - 3,06 = 1,44\) (cm).

(2,5 điểm)  1. Cho tam giác   A B C   có   A B = 4 c m  ,   B C = 4 , 5 c m ,     ˆ B = 40 ∘  . Gọi   A H   là đường cao kẻ từ đỉnh   A   của tam giác. Tính độ dài các đoạn thẳng   A H , B H , A C   và số đo góc   C   của tam giác   A B C   (kết quả làm tròn đến hàng phần trăm của cm và làm tròn đến phút của số đo góc). (ảnh 2)

Xét \[\Delta AHC\] vuông tại \[H\], theo định lí Pythagore, ta có:

\[A{C^2} = A{H^2} + H{C^2} \approx 2,{57^2} + 1,{44^2} = 8,6785\]

Suy ra \(AC \approx 2,95\) (cm).

Trong \[\Delta AHC\], ta cũng có: \(\tan C = \frac{{AH}}{{HC}} \approx \frac{{2,57}}{{1,44}} = \frac{{257}}{{144}}.\) Suy ra \(\widehat {C\,} \approx 60^\circ 44'.\)

2. Xét \(\Delta BCN\) vuông tại \(N,\) ta có:

\(BN = BC \cdot \sin \widehat {BCN} = 60 \cdot \sin 32^\circ \approx 31,80{\rm{\;(cm)}}{\rm{.}}\)

Ta thấy \(NC\) và \(BM\) là các đoạn thẳng nằm trên phương ngang nên \(NC\,{\rm{//}}\,BM,\) suy ra \(\widehat {CBM} = \widehat {BCN} = 32^\circ \) (so le trong).

Khi đó, \(\widehat {ABM} = \widehat {ABC} - \widehat {CBM} = 53^\circ - 32^\circ = 21^\circ \).

Xét \(\Delta ABM\) vuông tại \(M\), ta có:

\(AM = AB \cdot \sin \widehat {ABM} = 60 \cdot \sin 21^\circ \approx 21,50\) (cm).

Vậy, độ cao của điểm \(A\) trên đầu cánh tay robot so với mặt đất là:

\(AM + BN + CP \approx 21,50 + 31,80 + 17 = 70,3\) (cm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: B

Xét \(\Delta ABC\) vuông tại \(A,\) ta có:

⦁ \[B{C^2} = A{C^2} + A{B^2}\] hay \({a^2} = {b^2} + {c^2}\) (định lí Pythagore);

⦁ \[AC = BC \cdot \sin B = BC \cdot \cos C\] hay \(b = a \cdot \sin B = a \cdot \cos C\);

⦁ \(AB = BC \cdot \sin C = BC \cdot \cos B\) hay \(c = a \cdot \sin C = a \cdot \cos B\);

Như vậy các khẳng định A, C, D đều đúng.

Ta chọn phương án B.

Cho tam giác   A B C   vuông tại   A   có   B C = a , A C = b , A B = c  . Hệ thức nào sau đây là sai? (ảnh 1)

Lời giải

Đáp án đúng là: C

Sử dụng máy tính cầm tay ta lần lượt bấm các phím

Giá trị   sin 27 ∘   (kết quả làm tròn đến chữ số thập phân thứ ba) bằng (ảnh 1)

Trên màn hình hiện kết quả \(0,4539904997\), làm tròn kết quả đến chữ số thập phân thứ ba, ta được \(0,454\). Như vậy \(\sin 27^\circ \approx 0,454\).

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP