Bộ 10 đề thi giữa kì 1 Toán 9 Cánh diều có đáp án - Đề 5
26 người thi tuần này 4.6 3 K lượt thi 11 câu hỏi 60 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
36 bài tập Toán 9 Cánh diều Ôn tập cuối chương 10 có đáp án
15 câu Trắc nghiệm Toán 9 Cánh diều Ôn tập cuối chương 10 có đáp án
15 câu Trắc nghiệm Toán 9 Cánh diều Bài 3. Hình cầu có đáp án
6 bài tập Ứng dụng của mặt cầu trong thực tiễn (có lời giải)
3 bài tập Tính bán kính , diện tích, thể tích của mặt cầu (có lời giải)
20 bài tập Toán 9 Cánh diều Bài 2. Hình nón có đáp án
Danh sách câu hỏi:
Câu 1
A. \(\left( {x - 1} \right)\left( {x + 1} \right) = 0\).
B. \(x\left( {x + 1} \right) = 0\).
C. \(x = 0\).
D. \(x\left( {x - 1} \right) = 0\).
Lời giải
Đáp án đúng là: B
Dễ dàng thấy rằng:
⦁ Giá trị \(x = 0\) không là nghiệm của phương trình \(\left( {x - 1} \right)\left( {x + 1} \right) = 0\).
⦁ Giá trị \(x = 0\) và \(x = - 1\) là nghiệm của phương trình \(x\left( {x + 1} \right) = 0\).
⦁ Giá trị \(x = - 1\) không là nghiệm của phương trình \(x = 0\) và phương trình \(x\left( {x - 1} \right) = 0\)
Vậy ta chọn phương án B.
Câu 2
A. \(\left( {x;\,\,2x} \right)\) với \(x \in \mathbb{R}\).
B. \(\left( {x;\,\,\frac{x}{2}} \right)\) với \(x \in \mathbb{R}\).
C. \(\left( {2;\,\,y} \right)\) với \(y \in \mathbb{R}\).
D. \(\left( {0;\,\,y} \right)\) với \(y \in \mathbb{R}\).
Lời giải
Đáp án đúng là: B
Từ phương trình \(x - 2y = 0\) ta có \(x = 2y\) và \(y = \frac{x}{2}\).
Như vậy, công thức nghiệm tổng quát của phương trình ta có viết là \(\left( {x;\,\,\frac{x}{2}} \right)\) với \(x \in \mathbb{R}\) hoặc \(\left( {2y;\,\,y} \right)\) với \(y \in \mathbb{R}\).
Vậy ta chọn phương án B.
Câu 3
A. \(0,450\).
B. \(0,453\).
C. \(0,454\).
D. \(0,455\).
Lời giải
Đáp án đúng là: C
Sử dụng máy tính cầm tay ta lần lượt bấm các phím

Trên màn hình hiện kết quả \(0,4539904997\), làm tròn kết quả đến chữ số thập phân thứ ba, ta được \(0,454\). Như vậy \(\sin 27^\circ \approx 0,454\).
Câu 4
A. \(b = a \cdot \sin B = a \cdot \cos C\).
B. \(a = c \cdot \tan B = c \cdot \cot C\).
C. \({a^2} = {b^2} + {c^2}.\)
D. \(c = a \cdot \sin C = a \cdot \cos B\).
Lời giải
Đáp án đúng là: B
|
Xét \(\Delta ABC\) vuông tại \(A,\) ta có: ⦁ \[B{C^2} = A{C^2} + A{B^2}\] hay \({a^2} = {b^2} + {c^2}\) (định lí Pythagore); ⦁ \[AC = BC \cdot \sin B = BC \cdot \cos C\] hay \(b = a \cdot \sin B = a \cdot \cos C\); ⦁ \(AB = BC \cdot \sin C = BC \cdot \cos B\) hay \(c = a \cdot \sin C = a \cdot \cos B\); Như vậy các khẳng định A, C, D đều đúng. Ta chọn phương án B. |
|
Lời giải
Hướng dẫn giải
Đáp án: a) Đ;b) S;c) Đ; d) S.
⦁ Do \(a > 1\) nên \(a - 1 > 0\). Do đó ý a) là đúng.
⦁ Do \(a > b\) nên \(a - b > 0\). Do đó ý b) là sai.
⦁ Do \(1 > b\) hay \(b < 1\) nên \(b - 1 < 0\), mà \(a - 1 > 0\) suy ra \(\left( {a - 1} \right)\left( {b - 1} \right) < 0.\) Do đó ý c) là đúng.
⦁ Ta có \(a - 2b = \left( {a - 1} \right) - 2\left( {b - 1} \right) - 1\)
Do \(b - 1 < 0\) nên \( - 2\left( {b - 1} \right) > 0\).</>
Lại có \(a - 1 > 0\) nên \(\left( {a - 1} \right) - 2\left( {b - 1} \right) > 0,\) suy ra \(\left( {a - 1} \right) - 2\left( {b - 1} \right) - 1 > - 1\)
Như vậy \(2a - b > - 1.\) Do đó ý d) là sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

