Câu hỏi:

03/07/2025 22

Công thức nghiệm tổng quát của phương trình \(x - 2y = 0\) là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Từ phương trình \(x - 2y = 0\) ta có \(x = 2y\) và \(y = \frac{x}{2}\).

Như vậy, công thức nghiệm tổng quát của phương trình ta có viết là \(\left( {x;\,\,\frac{x}{2}} \right)\) với \(x \in \mathbb{R}\) hoặc \(\left( {2y;\,\,y} \right)\) với \(y \in \mathbb{R}\).

Vậy ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

1. a) \(\left( {\frac{1}{2}x - 1} \right)\left( {3 + 5x} \right) = 0\)

\(\frac{1}{2}x - 1 = 0\) hoặc \(3 + 5x = 0\)

\(\frac{1}{2}x = 1\) hoặc \(5x = - 3\)

\(x = 2\) hoặc \(x = - \frac{3}{5}\)

Vậy phương trình đã cho có hai nghiệm là \(x = 2;\) \(x = - \frac{3}{5}\).

1. b) Điều kiện xác định: \(x \ne 2,\,\,x \ne - 2.\)

\(\frac{{x + 2}}{{x - 2}} = \frac{{x - 2}}{{x + 2}} + \frac{{16}}{{{x^2} - 4}}\)

\(\frac{{{{\left( {x + 2} \right)}^2}}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \frac{{{{\left( {x - 2} \right)}^2}}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} + \frac{{16}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\)

\({\left( {x + 2} \right)^2} = {\left( {x - 2} \right)^2} + 16\)

\({x^2} + 4x + 4 = {x^2} - 4x + 4 + 16\)

\(8x = 16\)

\(x = 2\) (không thỏa mãn điều kiện)

Vậy phương trình đã cho vô nghiệm.

2. a) \(5 + \frac{2}{3}x > 3\)

\(\frac{2}{3}x > - 2\)

\(\frac{2}{3}x \cdot \frac{3}{2} > - 2 \cdot \frac{3}{2}\)

\(x > - 3\).

Vậy bất phương trình đã cho có nghiệm là \(x > - 3\).

2. b) \[{\left( {x - 1} \right)^2} < x\left( {x + 3} \right)\]

\[{x^2} - 2x + 1 < {x^2} + 3x\]

\[ - 5x < - 1\]

\[x > \frac{1}{5}\]

Vậy nghiệm bất phương trình đã cho là \[x > \frac{1}{5}\].

2. c) \[\frac{{2x - 1}}{3} - \frac{{x + 2}}{2} < \frac{{5x + 4}}{6}.\]

\[\frac{{2\left( {2x - 1} \right)}}{6} - \frac{{3\left( {x + 2} \right)}}{6} < \frac{{5x + 4}}{6}\]

\[2\left( {2x - 1} \right) - 3\left( {x + 2} \right) < 5x + 4\]

\[4x - 2 - 3x - 6 < 5x + 4\]

\[x - 8 < 5x + 4\]

\[x - 5x < 4 + 8\]

\[ - 4x < 12\]

\[x > - 3\].

Vậy nghiệm của bất phương trình đã cho là \[x > - 3\].

Lời giải

Đáp án đúng là: C

Sử dụng máy tính cầm tay ta lần lượt bấm các phím

Giá trị   sin 27 ∘   (kết quả làm tròn đến chữ số thập phân thứ ba) bằng (ảnh 1)

Trên màn hình hiện kết quả \(0,4539904997\), làm tròn kết quả đến chữ số thập phân thứ ba, ta được \(0,454\). Như vậy \(\sin 27^\circ \approx 0,454\).

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP