Bộ 10 đề thi giữa kì 1 Toán 9 Cánh diều có đáp án - Đề 3
33 người thi tuần này 4.6 2.9 K lượt thi 11 câu hỏi 60 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 5
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 4
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 3
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 2
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 1
Bộ 5 đề thi cuối kì 1 Toán 9 Cánh diều (Tự luận) có đáp án - Đề 5
Bộ 5 đề thi cuối kì 1 Toán 9 Cánh diều (Tự luận) có đáp án - Đề 4
Bộ 5 đề thi cuối kì 1 Toán 9 Cánh diều (Tự luận) có đáp án - Đề 3
Danh sách câu hỏi:
Câu 1
Lời giải
Đáp án đúng là: D
Các bước để giải phương trình chứa ẩn ở mẫu là
(1) Tìm điều kiện xác định của phương trình.
(4) Quy đồng mẫu thức hai vế của phương trình rồi khử mẫu.
(3) Giải phương trình vừa nhận được.
(2) Xét mỗi giá trị tìm được của ẩn, giá trị nào thỏa mãn điều kiện xác định thì đó là nghiệm của phương trình đã cho.
Vậy ta chọn phương án D.
Câu 2
Lời giải
Đáp án đúng là: C
Phương trình bậc nhất hai ẩn có dạng \[ax + by = c\] với \(a \ne 0\) hoặc \(b \ne 0\).
Do đó phương trình bậc nhất hai ẩn trong các phương trình trên là: \(x - 2y = 0.\)
Lời giải
Đáp án đúng là: C
![Cho tam giác \(ABC\) vuông tại \(A\) có \[BC = a,\] \[AC = b,\,\,AB = c.\] Khẳng định nào sau đây là đúng? A. \[\sin B = \frac{c}{a}\]. B. \[c = \frac{b}{{\cot B}}\]. C. \[c = b \cdot \tan C\]. D. \[b = c \cdot \cos C\]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2024/10/blobid0-1727918783.png)
Tam giác \(ABC\) vuông tại \(A\), ta có:
⦁ \[\sin B = \frac{{AC}}{{BC}} = \frac{b}{a}\];
⦁ \(AC = BC \cdot \cos C\) hay \(b = a \cdot \cos C\);
⦁ \(AB = AC \cdot \tan C\) hay \(c = b \cdot \tan C\);
⦁ \(\cot B = \frac{{AB}}{{AC}} = \frac{c}{b}\) suy ra \(b = \frac{c}{{\cot B}}\).
Vậy phương án C là khẳng định đúngCâu 4
Lời giải
![Cho tam giác \(ABC\) vuông tại \(A\) có đường cao \(AH\) và \(\widehat B = \alpha .\) Tỉ số \(\frac{{HA}}{{HC}}\) bằng A. \(\sin \alpha \). B. \[\cos \alpha \]. C. \(\tan \alpha \). D. \(\cot \alpha \). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2024/10/blobid1-1727918870.png)
Lời giải
Đáp án: a) S; b) S; c) Đ; d) Đ.
⦁ Vì \(a < b\) nên \(4a < 4b\) suy ra \(4a - 2 < 4b - 2\), do đó ý a) là sai.
⦁ Vì \(a < b\) nên \( - 3a > - 3b\) suy ra \(6 - 3a > 6 - 3b\), do đó ý b) là sai.
⦁ Vì \(a < b\) nên \(4a < 4b\) suy ra \(4a + 1 < 4b + 1 < 4b + 5\) hay \(4a + 1 < 4b + 5\), do đó ý c) là đúng.
⦁ Vì \(a < b\) nên \( - 2a > - 2b\) suy ra \(7 - 2a > 7 - 2b > 4 - 2b\) hay \(7 - 2a > 4 - 2b\), do đó ý d) đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Cho tam giác \[ABC\] vuông tại \(A\) có \(AB = 6\,\,{\rm{cm}}\) và \(\cos B = \frac{3}{5}.\) Tính độ dài các cạnh \(BC,\,\,AC\) và số đo góc \(C\) (làm tròn kết quả số đo góc đến phút). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2024/10/blobid4-1727919496.png)