Câu hỏi:

07/07/2025 10

Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác đều cạnh a, \(AA' = \frac{{3a}}{2}\). Biết rằng hình chiếu vuông góc của A' lên (ABC) là H trung điểm của BC. Khi đó:

a) A'H là đường cao hình lăng trụ.

b) Tam giác A'HA vuông tại A'.

c) Đường cao của khối lăng trụ trên là \(\frac{{a\sqrt 6 }}{2}\).

d) Thể tích của khối lăng trụ là \(\frac{{{a^3}\sqrt {18} }}{{24}}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

A'H là đường cao hình lăng trụ. (ảnh 1)

a) Vì A'H ^ (ABC) nên A'H là khoảng cách giữa hai mặt phẳng đáy.

Do đó A'H là đường cao hình lăng trụ.

b) Ta có A'H ^ (ABC) Þ A'H ^ HA. Suy ra tam giác A'HA vuông tại H.

c) Có \(BH = \frac{1}{2}BC = \frac{a}{2};AH = \sqrt {A{B^2} - B{H^2}} = \sqrt {{a^2} - {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{a\sqrt 3 }}{2}\).

\( \Rightarrow A'H = \sqrt {A{{A'}^2} - A{H^2}} = \sqrt {{{\left( {\frac{{3a}}{2}} \right)}^2} - {{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}} = \frac{{a\sqrt 6 }}{2}\).

d) \({V_{ABC.A'B'C'}} = A'H.{S_{\Delta ABC}} = \frac{{a\sqrt 6 }}{2}.\frac{{{a^2}\sqrt 3 }}{4} = \frac{{{a^3}\sqrt {18} }}{8}\).

Đáp án: a) Đúng; b) Sai;   c) Đúng;   d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

V (ảnh 1)

a) b) Ta có: \(AD//BC \Rightarrow AD//(SBC) \Rightarrow d(D,(SBC)) = d(A,(SBC))\).

Trong mặt phẳng \((SAB)\), kẻ \(AH \bot SB\) tại \(H\). (1)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BC \bot AB}\\{BC \bot SA}\end{array} \Rightarrow BC \bot (SAB) \Rightarrow AH \bot BC} \right.\). (2)

Từ (1) và (2) suy ra \(AH \bot (SBC)\) hay \(d(A,(SBC)) = AH\).

Tam giác \(SAB\) vuông tại \(A\) có đường cao \(AH\) nên:

\(\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}} \Rightarrow AH = \frac{{SA \cdot AB}}{{\sqrt {S{A^2} + A{B^2}} }} = \frac{{2a \cdot a\sqrt 2 }}{{\sqrt {4{a^2} + 2{a^2}} }} = \frac{{2a\sqrt 3 }}{3}{\rm{. }}\)

Vậy \(d(D,(SBC)) = d(A,(SBC)) = AH = \frac{{2a\sqrt 3 }}{3}\).

c) Trong mặt phẳng \((SAD)\), kẻ \(AK \bot SD\) tại \(K\). (3)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{AB \bot SA}\\{AB \bot AD}\end{array} \Rightarrow AB \bot (SAD) \Rightarrow AB \bot AK} \right.\).(4)

Từ (3) và (4) suy ra \(AK\) là đường vuông góc chung của hai đường thẳng chéo nhau \(AB,SD\).

Tam giác \(ACD\) vuông tại \(D\) nên \(AD = \sqrt {A{C^2} - C{D^2}} = \sqrt {3{a^2} - 2{a^2}} = a\).

Tam giác \(SAD\) vuông tại \(A\) có đường cao \(AK\) nên

\(\frac{1}{{A{K^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{D^2}}} \Rightarrow AK = \frac{{SA \cdot AD}}{{\sqrt {S{A^2} + A{D^2}} }} = \frac{{2a \cdot a}}{{\sqrt {4{a^2} + {a^2}} }} = \frac{{2a\sqrt 5 }}{5}{\rm{. }}\)

Vậy \(d(AB,SD) = AK = \frac{{2a\sqrt 5 }}{5}\).

c) Diện tích đáy hình chóp là: \({S_{ABCD}} = a \cdot a\sqrt 2 = {a^2}\sqrt 2 \).

Thể tích khối chóp cần tìm là:

\({V_{S.ABCD}} = \frac{1}{3}SA \cdot {S_{ABCD}} = \frac{1}{3} \cdot 2a \cdot {a^2}\sqrt 2 = \frac{{2\sqrt 2 {a^3}}}{3}{\rm{ }}\)(đơn vị thể tích).

Đáp án: a) Đúng; b) Sai;   c) Đúng;   d) Sai.

Câu 2

Lời giải

B

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a và SA ^ (ABCD), SA = a. Khoảng cách từ S đến mặt phẳng (ABCD) là  	 (ảnh 1)

Vì SA ^ (ABCD) nên d(S, (ABCD)) = SA = a.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP