Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác đều cạnh a, \(AA' = \frac{{3a}}{2}\). Biết rằng hình chiếu vuông góc của A' lên (ABC) là H trung điểm của BC. Khi đó:
a) A'H là đường cao hình lăng trụ.
b) Tam giác A'HA vuông tại A'.
c) Đường cao của khối lăng trụ trên là \(\frac{{a\sqrt 6 }}{2}\).
d) Thể tích của khối lăng trụ là \(\frac{{{a^3}\sqrt {18} }}{{24}}\).
Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác đều cạnh a, \(AA' = \frac{{3a}}{2}\). Biết rằng hình chiếu vuông góc của A' lên (ABC) là H trung điểm của BC. Khi đó:
a) A'H là đường cao hình lăng trụ.
b) Tam giác A'HA vuông tại A'.
c) Đường cao của khối lăng trụ trên là \(\frac{{a\sqrt 6 }}{2}\).
d) Thể tích của khối lăng trụ là \(\frac{{{a^3}\sqrt {18} }}{{24}}\).
Quảng cáo
Trả lời:

a) Vì A'H ^ (ABC) nên A'H là khoảng cách giữa hai mặt phẳng đáy.
Do đó A'H là đường cao hình lăng trụ.
b) Ta có A'H ^ (ABC) Þ A'H ^ HA. Suy ra tam giác A'HA vuông tại H.
c) Có \(BH = \frac{1}{2}BC = \frac{a}{2};AH = \sqrt {A{B^2} - B{H^2}} = \sqrt {{a^2} - {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{a\sqrt 3 }}{2}\).
\( \Rightarrow A'H = \sqrt {A{{A'}^2} - A{H^2}} = \sqrt {{{\left( {\frac{{3a}}{2}} \right)}^2} - {{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}} = \frac{{a\sqrt 6 }}{2}\).
d) \({V_{ABC.A'B'C'}} = A'H.{S_{\Delta ABC}} = \frac{{a\sqrt 6 }}{2}.\frac{{{a^2}\sqrt 3 }}{4} = \frac{{{a^3}\sqrt {18} }}{8}\).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Sai.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
B

Vì SA ^ (ABCD) nên d(S, (ABCD)) = SA = a.
Lời giải

Vì S.ABC là hình chóp tam giác đều, O là tâm của đáy nên SO ^ (ABC).
Gọi M là trung điểm của BC, suy ra AM là đường cao Þ \(AM = \frac{{4a\sqrt 3 }}{2} = 2a\sqrt 3 \).
Vì \(AO = \frac{2}{3}AM = \frac{2}{3}.2a\sqrt 3 = \frac{{4a\sqrt 3 }}{3}\).
Xét DSOA vuông tại O, có \(SO = \sqrt {S{A^2} - A{O^2}} = \sqrt {9{a^2} - \frac{{16{a^2}}}{3}} = \frac{{a\sqrt {33} }}{3}\).
Thể tích của khối chóp \({V_{S.ABC}} = \frac{1}{3}.SO.{S_{ABC}} = \frac{1}{3}.\frac{{a\sqrt {33} }}{3}.\frac{{16{a^2}\sqrt 3 }}{4} = \frac{{4{a^3}\sqrt {11} }}{3}\).
Vì AM ^ BC và SO ^ BC (SO ^ (ABC)) Þ BC ^ (SAM) Þ BC ^ SM.
Vì \(\left\{ \begin{array}{l}AM \bot BC\\SM \bot BC\\\left( {SBC} \right) \cap \left( {ABC} \right) = BC\end{array} \right.\)Þ ((SBC), (ABC)) = (AM, SM) = \(\widehat {SMA} = \widehat {SMO}\).
Xét \(\Delta SOM\) có \(\tan \widehat {SMO} = \frac{{SO}}{{MO}} = \frac{{a\sqrt {33} }}{3}:\frac{{2a\sqrt 3 }}{3} = \frac{{\sqrt {11} }}{2}\).
Đáp án: a) Sai; b) Đúng; c) Đúng; d) Sai.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
