CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

C

Thể tích khối chóp là \(V = \frac{1}{3}Bh = \frac{1}{3}.7.6 = 14\).

Lời giải

Cho hình chóp tam giác đều S.ABC có tâm của đáy là điểm O, AB = 4a, SA = 3a. (ảnh 1)

Vì S.ABC là hình chóp tam giác đều, O là tâm của đáy nên SO ^ (ABC).

Gọi M là trung điểm của BC, suy ra AM là đường cao Þ \(AM = \frac{{4a\sqrt 3 }}{2} = 2a\sqrt 3 \).

\(AO = \frac{2}{3}AM = \frac{2}{3}.2a\sqrt 3 = \frac{{4a\sqrt 3 }}{3}\).

Xét DSOA vuông tại O, có \(SO = \sqrt {S{A^2} - A{O^2}} = \sqrt {9{a^2} - \frac{{16{a^2}}}{3}} = \frac{{a\sqrt {33} }}{3}\).

Thể tích của khối chóp \({V_{S.ABC}} = \frac{1}{3}.SO.{S_{ABC}} = \frac{1}{3}.\frac{{a\sqrt {33} }}{3}.\frac{{16{a^2}\sqrt 3 }}{4} = \frac{{4{a^3}\sqrt {11} }}{3}\).

Vì AM ^ BC và SO ^ BC (SO ^ (ABC)) Þ BC ^ (SAM) Þ BC ^ SM.

\(\left\{ \begin{array}{l}AM \bot BC\\SM \bot BC\\\left( {SBC} \right) \cap \left( {ABC} \right) = BC\end{array} \right.\)Þ ((SBC), (ABC)) = (AM, SM) = \(\widehat {SMA} = \widehat {SMO}\).

Xét \(\Delta SOM\)\(\tan \widehat {SMO} = \frac{{SO}}{{MO}} = \frac{{a\sqrt {33} }}{3}:\frac{{2a\sqrt 3 }}{3} = \frac{{\sqrt {11} }}{2}\).

Đáp án: a) Sai;   b) Đúng;   c) Đúng;   d) Sai.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP