Câu hỏi:
07/07/2025 10
Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông cạnh bằng 2, cạnh bên bằng \(2\sqrt 2 \). Tính khoảng cách giữa hai đường thẳng AB và SD (kết quả làm tròn đến hàng phần chục).
Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông cạnh bằng 2, cạnh bên bằng \(2\sqrt 2 \). Tính khoảng cách giữa hai đường thẳng AB và SD (kết quả làm tròn đến hàng phần chục).
Quảng cáo
Trả lời:
Gọi O là giao điểm của AC và BD.
Vì AB // CD nên AB // (SCD).
Khi đó d(AB, CD) = d(AB, (SCD)) = d(A, (SCD)).
Lại có \(\frac{{d\left( {A,\left( {SCD} \right)} \right)}}{{d\left( {O,\left( {SCD} \right)} \right)}} = \frac{{CA}}{{CO}} = 2\).
Hạ OM ^ CD, OH ^ SM
Vì SO ^ (ABCD) Þ SO ^ CD mà OM ^ CD Þ CD ^ (SOM) Þ CD ^ OH.
Lại có OH ^ SM nên OH ^ (SCD). Do đó d(O, (SCD)) = OH.
Ta có \(OM = \frac{1}{2}AD = 1\), \(AC = 2\sqrt 2 \Rightarrow OC = \sqrt 2 \).
Xét DSOC vuông tại O, \(SO = \sqrt {S{C^2} - O{C^2}} = \sqrt {{{\left( {2\sqrt 2 } \right)}^2} - {{\left( {\sqrt 2 } \right)}^2}} = \sqrt 6 \).
Xét DSOM vuông tại O, \(\frac{1}{{O{H^2}}} = \frac{1}{{S{O^2}}} + \frac{1}{{O{M^2}}} = \frac{1}{6} + \frac{1}{1} = \frac{7}{6}\)Þ \(OH = \frac{{\sqrt {42} }}{7}\).
Khi đó d(A, (SCD)) = \(2.\frac{{\sqrt {42} }}{7} \approx 1,9\).
Trả lời: 1,9.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) b) Ta có: \(AD//BC \Rightarrow AD//(SBC) \Rightarrow d(D,(SBC)) = d(A,(SBC))\).
Trong mặt phẳng \((SAB)\), kẻ \(AH \bot SB\) tại \(H\). (1)
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BC \bot AB}\\{BC \bot SA}\end{array} \Rightarrow BC \bot (SAB) \Rightarrow AH \bot BC} \right.\). (2)
Từ (1) và (2) suy ra \(AH \bot (SBC)\) hay \(d(A,(SBC)) = AH\).
Tam giác \(SAB\) vuông tại \(A\) có đường cao \(AH\) nên:
\(\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}} \Rightarrow AH = \frac{{SA \cdot AB}}{{\sqrt {S{A^2} + A{B^2}} }} = \frac{{2a \cdot a\sqrt 2 }}{{\sqrt {4{a^2} + 2{a^2}} }} = \frac{{2a\sqrt 3 }}{3}{\rm{. }}\)
Vậy \(d(D,(SBC)) = d(A,(SBC)) = AH = \frac{{2a\sqrt 3 }}{3}\).
c) Trong mặt phẳng \((SAD)\), kẻ \(AK \bot SD\) tại \(K\). (3)
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{AB \bot SA}\\{AB \bot AD}\end{array} \Rightarrow AB \bot (SAD) \Rightarrow AB \bot AK} \right.\).(4)
Từ (3) và (4) suy ra \(AK\) là đường vuông góc chung của hai đường thẳng chéo nhau \(AB,SD\).
Tam giác \(ACD\) vuông tại \(D\) nên \(AD = \sqrt {A{C^2} - C{D^2}} = \sqrt {3{a^2} - 2{a^2}} = a\).
Tam giác \(SAD\) vuông tại \(A\) có đường cao \(AK\) nên
\(\frac{1}{{A{K^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{D^2}}} \Rightarrow AK = \frac{{SA \cdot AD}}{{\sqrt {S{A^2} + A{D^2}} }} = \frac{{2a \cdot a}}{{\sqrt {4{a^2} + {a^2}} }} = \frac{{2a\sqrt 5 }}{5}{\rm{. }}\)
Vậy \(d(AB,SD) = AK = \frac{{2a\sqrt 5 }}{5}\).
c) Diện tích đáy hình chóp là: \({S_{ABCD}} = a \cdot a\sqrt 2 = {a^2}\sqrt 2 \).
Thể tích khối chóp cần tìm là:
\({V_{S.ABCD}} = \frac{1}{3}SA \cdot {S_{ABCD}} = \frac{1}{3} \cdot 2a \cdot {a^2}\sqrt 2 = \frac{{2\sqrt 2 {a^3}}}{3}{\rm{ }}\)(đơn vị thể tích).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Sai.
Lời giải
B
Vì SA ^ (ABCD) nên d(S, (ABCD)) = SA = a.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.