Câu hỏi:

07/07/2025 31 Lưu

Cho hình lập phương ABCD.A'B'C'D' cạnh 2. Tính khoảng cách giữa hai mặt phẳng (A'BD), (CB'D'). (kết quả làm tròn đến hàng phần trăm).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tính khoảng cách giữa hai mặt phẳng (A'BD), (CB'D'). (kết quả làm tròn đến hàng phần trăm). (ảnh 1)

Gọi O = AC Ç BD.

\[\left\{ \begin{array}{l}A'B//CD';BD//B'D'\\A'B \subset \left( {A'BD} \right);BD \subset \left( {A'BD} \right)\\CD' \subset \left( {CB'D'} \right);B'D' \subset \left( {CB'D'} \right)\end{array} \right. \Rightarrow \left( {A'BD} \right)//\left( {CB'D'} \right)\].

Þd((A'BD), (CB'D')) = d(C,(A'DB)) = d(A, (A'DB)).

Trong DAOA' kẻ AH ^ A'O.

Ta có BD ^ AO; BD ^ AA' nên BD ^ (AA'O) Þ BD ^ AH.

Lại có BD ^ AH; A'O ^ AH nên AH ^ (A'BD).

Suy ra d(A, (A'DB)) = AH = \[\frac{{AA'.AO}}{{\sqrt {A'{A^2} + A{O^2}} }} = \frac{{2\sqrt 3 }}{3} \approx 1,15\].

Trả lời: 1,15.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

B

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a và SA ^ (ABCD), SA = a. Khoảng cách từ S đến mặt phẳng (ABCD) là  	 (ảnh 1)

Vì SA ^ (ABCD) nên d(S, (ABCD)) = SA = a.

Câu 2

Lời giải

C

Thể tích khối chóp là \(V = \frac{1}{3}Bh = \frac{1}{3}.7.6 = 14\).

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP