Cho hàm số \[y = a{x^2} + bx + c\] có đồ thị như hình bên.
Khẳng định nào sau đây đúng?
Cho hàm số \[y = a{x^2} + bx + c\] có đồ thị như hình bên.

Khẳng định nào sau đây đúng?
Quảng cáo
Trả lời:
Đáp án đúng là: D
Dựa vào đồ thị, nhận thấy:
* Đồ thị hàm số là một parabol có bề lõm quay xuống dưới nên \(a < 0\).
* Đồ thị cắt trục tung tại tung độ bằng \(c\) nên \(c > 0\).
* Đồ thị cắt trục hoành tại hai điểm có hoành độ \({x_1} = - 1\) và \({x_2} = 3\) nên \({x_1},{x_2}\) là hai nghiệm của phương trình \[a{x^2} + bx + c = 0\] mà theo Vi-et \[{x_1} + {x_2} = - \frac{b}{a} = 2\]\[ \Leftrightarrow b = - 2a \Rightarrow b > 0\].
Vậy \[a < 0\], \[b > 0\], \[c > 0\].
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \[x\] là giá bán thực tế của mỗi quả bưởi da xanh (\[x\]: đồng, \[35\,000 \le x \le 60\,000\]).
Tương ứng với giá bán là \[x\] thì số quả bán được là:
\[30 + \frac{{10}}{{1\,000}}\left( {60\,000 - x} \right) = - \frac{1}{{100}}x + 630\].
Gọi \[f\left( x \right)\] là hàm lợi nhuận thu được (\[f\left( x \right)\]: đồng), ta có:
Lợi nhuận thu được lớn nhất khi hàm \[f\left( x \right)\] đạt giá trị lớn nhất trên \[\left[ {35000\,;60000} \right]\].
Lời giải
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.