Câu hỏi:

20/07/2025 19 Lưu

Tọa độ giao điểm của \(\left( P \right)\,:\,y = {x^2} - 4x\) với đường thẳng \(d\,:\,y = - x - 2\) là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Hoành độ giao điểm của \(\left( P \right)\) và \(d\) là nghiệm của phương trình:

\({x^2} - 4x =  - x - 2\, \Leftrightarrow \,{x^2} - 3x + 2 = 0\, \Leftrightarrow \,\left[ \begin{array}{l}x = 1\\x = 2\end{array} \right.\).

Vậy tọa độ giao điểm của \(\left( P \right)\) và \(d\) là \(M\left( {1;\, - 3} \right)\), \(N\left( {2;\, - 4} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \[x\] là giá bán thực tế của mỗi quả bưởi da xanh (\[x\]: đồng, \[35\,000 \le x \le 60\,000\]).

Tương ứng với giá bán là \[x\] thì số quả bán được là:

\[30 + \frac{{10}}{{1\,000}}\left( {60\,000 - x} \right) =  - \frac{1}{{100}}x + 630\].

Gọi \[f\left( x \right)\] là hàm lợi nhuận thu được (\[f\left( x \right)\]: đồng), ta có:

fx=1100x+630x35000=1100x2+980x22050000

Li nhuận thu được lớn nhất khi hàm \[f\left( x \right)\] đạt giá trị lớn nhất trên \[\left[ {35000\,;60000} \right]\].

Ta có: fx=110x49002+19600001960000,  x35000;60000
\[ \Rightarrow \mathop {\max }\limits_{x \in \left[ {35\,000\,;60\,000} \right]} {\rm{ }}f\left( x \right) = f\left( {49\,000} \right) = 1\,960\,000\].
Vậy với giá bán \[49\] nghìn đồng mỗi quả bưởi thì cửa hàng thu được lợi nhuận lớn nhất.
Đáp án: 49.

Lời giải

a) Đúng. Trục đối xứng của đồ thị là đường thẳng x=b2a=421=2

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP