Câu hỏi:

20/07/2025 2 Lưu

Tìm giá trị thực của tham số \(m \ne 0\) để hàm số \(y = m{x^2} - 2mx - 3m - 2\) có giá trị nhỏ nhất bằng \( - 10\) trên \(\mathbb{R}.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Ta có \(x =  - \frac{b}{{2a}} = \frac{{2m}}{{2m}} = 1\), suy ra \(y =  - 4m - 2\).

Để hàm số có giá trị nhỏ nhất bằng \( - 10\) khi và chỉ khi m>04m2=10m=2 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai. Ta có \(\frac{{ - b}}{{2a}}\, = \,2;\,\frac{{ - \Delta }}{{4a}} = \, - 9.\) Đồ thị hàm số \(y = {x^2} - 4x - 5\)có đỉnh \(I\left( {2; - 9} \right).\)

Lời giải

a) Đúng. Trục đối xứng của đồ thị là đường thẳng x=b2a=421=2

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP